Lecture 3: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 3, 2024
601.433/633 Introduction to Algorithms
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Introduction: Sorting

» Sorting: given array of comparable elements, put them in sorted order
» Popular topic to cover in Algorithms courses
» This course:

» | assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort,
etc.) from Data Structures

» Today: more advanced sorting (randomized quicksort)

» Next week: Sorting lower bound and ways around it.
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Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
» What is the “average case”?

» Want to design algorithms that work in all applications.
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Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
» What is the “average case”?

» Want to design algorithms that work in all applications.
Instead of assuming random distribution over inputs (average-case analysis, machine learning),

add randomization inside algorithm!

» Still assume worst-case inputs, give bound on worst-case expected running time.
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Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
» What is the “average case”?

» Want to design algorithms that work in all applications.
Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

» Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!
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Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
» What is the “average case”?

» Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

» Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.
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Quicksort Basics (Review)

Input: array A of length n.
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Quicksort Basics (Review)

Input: array A of length n.

Algorithm:
1. f n=0or 1, return A (already sorted)
2. Pick some element p as the pivot
3. Compare every element of A to p. Let L be the elements less than p, let G be the
elements larger than p. Create array [L, p, G|
4. Recursively sort L and G.
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Quicksort Basics (Review)

Input: array A of length n.

Algorithm:
1. f n=0or 1, return A (already sorted)
2. Pick some element p as the pivot

3. Compare every element of A to p. Let L be the elements less than p, let G be the
elements larger than p. Create array [L, p, G|

4. Recursively sort L and G.

Not fully specified: how to choose p?
» Traditionally: some simple deterministic choice (first element, last element, etc.)
» Next lecture: better deterministic choice (not very practical)

> Now: first element
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.
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Quicksort Analysis
Upper bound:
If p picked as pivot in step 2, then in correct place after step 3

== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
—> total time at most O(n?)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort

September 3, 2024

5/16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
—> total time at most O(n?)

Lower Bound:
Suppose A already sorted.
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)

—> total time at most O(n?)

Lower Bound:
Suppose A already sorted.
== p = A[0] is smallest element
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)

—> total time at most O(n?)

Lower Bound:
Suppose A already sorted.
== p = A[0] is smallest element = L=g@ and G = A[1..n-1]
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
—> total time at most O(n?)

Lower Bound:

Suppose A already sorted.

== p = A[0] is smallest element = L=g@ and G = A[1..n-1]

== in one call to quicksort, do €(n) work to compare everything to p, then recurse on
array of size n-1
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
—> total time at most O(n?)

Lower Bound:

Suppose A already sorted.

== p = A[0] is smallest element = L=g@ and G = A[1..n-1]

== in one call to quicksort, do €(n) work to compare everything to p, then recurse on
array of size n-1

== running timeis T(n) = T(n-1) +cn
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Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
== step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)
—> total time at most O(n?)

Lower Bound:

Suppose A already sorted.

== p = A[0] is smallest element = L=g@ and G = A[1..n-1]

== in one call to quicksort, do €(n) work to compare everything to p, then recurse on
array of size n-1

= running time is T(n) = T(n-1) +cn = T(n) = O(n?)
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Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(nlog n) for every input A.
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Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(nlog n) for every input A.
» Better than an average-case bound: holds for every single input!

» Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!
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Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(nlog n) for every input A.
» Better than an average-case bound: holds for every single input!
» Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!
» Today only expectation. Can be more clever to get high probability bounds.
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Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(nlog n) for every input A.
» Better than an average-case bound: holds for every single input!
» Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!
» Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.
» Roll two dice. Q =
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6}x{1,2,...,6}.
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6}x{1,2,...,6}. Not {2,3,...,12}
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6}x{1,2,...,6}. Not {2,3,...,12}
Event: subset of Q2
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability
Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6}x{1,2,...,6}. Not {2,3,...,12}
Event: subset of Q2

» “Event that first die is 3": {(3,x):x€{1,2,...,6}}
» “Event that dice add up to 7 or 11": {(x,y) € Q:(x+y=7) or (x +y =11)}
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6}x{1,2,...,6}. Not {2,3,...,12}
Event: subset of Q2

» “Event that first die is 3": {(3,x):x€{1,2,...,6}}

» “Event that dice add up to 7 or 11": {(x,y) € Q:(x+y=7) or (x +y =11)}
Random Variable: X : Q - R

» Xj: value of first die. Xj(x,y) =x
» X: value of second die. Xa(x,y) =y
» X = Xq + Xp: sum of the dice. X(x,y)=x+y=Xi(x,y)+ Xa(x,Yy)
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Probability Basics |

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

Q: Sample space. Set of all possible outcomes.

» Roll two dice. 2 ={1,2,...,6} x{1,2,...,6}. Not {2,3,...,12}
Event: subset of

» “Event that first die is 3": {(3,x):x€{1,2,...,6}}

» “Event that dice add up to 7 or 11": {(x,y) € Q:(x+y=7) or (x +y =11)}
Random Variable: X : Q2 - R

» Xj: value of first die. Xj(x,y) =x

» Xy: value of second die. Xa(x,y) =y

» X = Xq + Xp: sum of the dice. X(x,y)=x+y=Xi(x,y)+ Xa(x,Yy)

Random variables super important! Running time of randomized quicksort is a random
variable.
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Probability Basics Il

Want to define probabilities. Should use measure theory. Won't.
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Probability Basics Il

Want to define probabilities. Should use measure theory. Won't.

For each e € Q let Pr[e] be probability of e (probability distribution)
» Pr[e] >0 for all ee R, and ¥ ..q Pr[e] =1
» Probability of an event A is Pr[A] =Y cca Pr[e]
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Probability Basics Il

Want to define probabilities. Should use measure theory. Won't.

For each e € Q let Pr[e] be probability of e (probability distribution)
» Pr[e] >0 for all ee R, and ¥ ..q Pr[e] =1
» Probability of an event A is Pr[A] =Y cca Pr[e]

Conditional probability: if A and B are events:

Pr[B|A] = PI’[AﬂB] _ ZeeAnB Pr[e]
~ PrlAl TeaPrle]
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Probability Basics Ill: Expectations

Expectation of a random variable:

E[X]= Zs:zX(e)Pr[e]

“Average” of the random variable according to probability distribution
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Probability Basics Ill: Expectations
Expectation of a random variable:
E[X]=) X(e)Pr[e]
eeQ

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

E[X]=) X(e)Prle]=) >

y-Prle]=} y-Pr[X=y]
eeQ yeR eeQ: X (e)=y

yeR
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Probability Basics Ill: Expectations

Expectation of a random variable:

E[X]=) X(e)Pr[e]

eeQ

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

= ZX(e)Pr[e]= Z Z y-Pr[e] = Zy-Pr[X=y]

ecQ YeR eeQ: X (e)=y yeR

Conditional Expectation: A an event, X a random variable.

E[X|A] = —— ) X(e)Pr[e]
[A] ecA
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Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants o and 3:
El[aX +8Y]=aE[X]+BE[Y]
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Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants o and 3:
El[aX +8Y]=aE[X]+BE[Y]

Consider rolling two dice. Let X be sum. What is E[X]?
» E[X] =Y e X(e)Pr[e]. 36 term sum!
» E[X]=X,ry-Pr[X =y]. Whatis Pr[X =2], Pr[X =3], ...7
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Linearity of Expectations
Amazing feature of expectations: linearity!
Theorem

For any two random variables X and Y, and any constants o and 3:
El[aX +8Y]=aE[X]+BE[Y]

Consider rolling two dice. Let X be sum. What is E[X]?
» E[X] =Y e X(e)Pr[e]. 36 term sum!
» E[X]=X,ry-Pr[X =y]. Whatis Pr[X =2], Pr[X =3], ...7

Instead: X = X1 + Xa2. So E[X] = E[X1 + X2] = E[X1] + E[X2]
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Linearity of Expectations
Amazing feature of expectations: linearity!
Theorem

For any two random variables X and Y, and any constants o and 3:
El[aX +8Y]=aE[X]+BE[Y]

Consider rolling two dice. Let X be sum. What is E[X]?
» E[X] =Y e X(e)Pr[e]. 36 term sum!
» E[X]=X,ry-Pr[X =y]. Whatis Pr[X =2], Pr[X =3], ...7

Instead: X = X1 + Xa2. So E[X] = E[X1 + X2] = E[X1] + E[X2]

1

E[Xi] = 26) 3.5

c\IPﬂ
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Linearity of Expectations

Amazing feature of expectations: linearity!
Theorem

For any two random variables X and Y, and any constants o and 3:
El[aX +8Y]=aE[X]+BE[Y]

Consider rolling two dice. Let X be sum. What is E[X]?
» E[X] =Y e X(e)Pr[e]. 36 term sum!
» E[X]=X,ry-Pr[X =y]. Whatis Pr[X =2], Pr[X =3], ...7

Instead: X = X1 + Xa2. So E[X] = E[X1 + X2] = E[X1] + E[X2]

1

E[Xi] = 26) 3.5

c\IPﬂ

— E[X]=35+35=7
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Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants o and (3:
E[aX +BY]=aE[X]+BE[Y]

Proof.
E[aX+BY]=) Prle](aX(e)+BY(e))
ecQ
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Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants o and (3:
E[aX +BY]=aE[X]+BE[Y]

Proof.
E[aX +BY] = Z;) Prle] (aX(e) +BY(e))
=" %Pr[e]X(e) +0 Xg:z Pr[e]X(e)
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Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants o and (3:
E[aX +BY]=aE[X]+BE[Y]

Proof.

E[aX +BY] = Z;) Prle] (aX(e) +BY(e))
=« %Pr[e]X(e) +0 Xg:z Pr[e]X(e)
=aE[X]+BE[Y]
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Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants o and (3:
E[aX +BY]=aE[X]+BE[Y]

Proof.
E[aX +BY] = Z;) Prle] (aX(e) +BY(e))
=" %Pr[e]X(e) +0 Xg:z Pr[e]X(e)

=aE[X]+BE[Y]

Holds no matter how correlated X and Y arel!
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Randomized Quicksort |

Theorem J

The expected running time of randomized quicksort is at most O(nlog n).
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Randomized Quicksort |

Theorem

The expected running time of randomized quicksort is at most O(nlog n).

Assume for simplicity all elements distinct. Running time = ©(# of comparisons)
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Randomized Quicksort |

Theorem

The expected running time of randomized quicksort is at most O(nlog n).

Assume for simplicity all elements distinct. Running time = ©(# of comparisons)

Definitions:

» X = # of comparisons (random variable)

> e; = i'th smallest element (for i € {1,...,n})

» Xjj random variable for all i,j € {1,...,n} with i <:

% 1 if algorithm compares €; and e; at any point in time
Y 10 otherwise

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024

12/16



Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = 27;11 Ejr-'=;+1 Xij
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = 27;11 27=i+1 Xij

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

i=1j=i+1 i=1j=i+1
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = 27;11 27=i+1 Xij

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

i=1j=i+1 i=1j=i+1

So just need to understand E[Xj;]
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = 27;11 27=i+1 Xij

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

-1 j=i1 im1 j=ie1
So just need to understand E[Xj;]

Simple cases:
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = 27;11 27=i+1 Xij

n-1 n n-1 n
EIX]=E|Y X Xj|=2 > E[Xj]
i=1 j=i+1 i=1 j=i+1

So just need to understand E[Xj;]

Simple cases:

> j=i+1:
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = Z?__ll Ef=i+1

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

-1 j=i1 im1 j=ie1
So just need to understand E[Xj;]

Simple cases:

» j=i+1: Xj =1 no matter what, so E[Xj;] =1
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = Z?__ll Ef=i+1

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

-1 j=i1 im1 j=ie1
So just need to understand E[Xj;]

Simple cases:
» j=i+1: Xj =1 no matter what, so E[Xj;] =1
»i=1,j=n:
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Randomized Quicksort Il

Algorithm never compares the same two elements more than once =— X = Z?__ll Ef=i+1

n-1 n n-1 n
EIXI=E|Y, X Xi[=2 X E[Xy]

-1 j=i1 im1 j=ie1
So just need to understand E[Xj;]

Simple cases:

» j=i+1: Xj =1 no matter what, so E[Xj;] =1

» i=1,j=n: e; and e, compared if and only if first pivot chosen is e; or e,

= E[Xip] =2

n
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E[Xij]: General Case (i < j)

If p=ejor p=e;:
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1

Ife,-<p<ej:
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1

Ife,-<p<ej: X,'j=0
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>e;:
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.

» Condition on e; < p< €;:

September 3, 2024 14 /16
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E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.

» Conditionon ;< p<ej: E[X; | ei<p<ej]= j-:?+1

September 3, 2024 14 /16

Michael Dinitz Lecture 3: Probability, Randomized Quicksort



E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.

» Conditionon ;< p<ej: E[X; | ei<p<ej]= j-:?+1

» Condition on p ¢ [e;, gj]:
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lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.

» Conditionon ;< p<ej: E[X; | ei<p<ej]= j-:?+1

» Condition on p ¢ [e;j, €j]: still undetermined

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 /16



E[Xij]: General Case (i < j)

lfp=eiorp=¢;: Xj=1
Ife,-<p<ej: X,'j=0

If p<ejorp>ej: 7 Both e, € in same recursive call.

» Conditionon ;< p<ej: E[X; | ei<p<ej]= j-:g+1

» Condition on p ¢ [e;j, €j]: still undetermined
So Xjj not determmed until e; < p < j, and when it is determined has E[Xj] =
== E[Xj]=

j- l+1

Jj- :+1
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E[Xij]: General Case (formally)

Let Yy be event that the k'th pivot is in [e;, ;] and all previous pivots not in [e;j, €j]
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E[Xij]: General Case (formally)

Let Yy be event that the k'th pivot is in [e;, ;] and all previous pivots not in [e;j, €j]
== by definition, the Y} events are disjoint and partition sample space

Showed that E[Xj|Yy] = — for all k.
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E[Xij]: General Case (formally)

Let Yy be event that the k'th pivot is in [e;, ;] and all previous pivots not in [e;j, €j]
== by definition, the Y} events are disjoint and partition sample space

Showed that E[Xj|Yy] = — for all k.
n
[Xii]1 =Y E[Xij|Yi]Pr[Yi] (Yk disjoint and partition Q)
k=1
2
Z Pr(Yi]
J—I+1
2
Cj-i+l
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Randomized Quicksort: Final Analysis

Expected running time of randomized quicksort:

n-1 n

E[X]=) Y E[Xy] (linearity of expectations)
im1 j=ivl
n-1 n 2

idjsia-i+1l

i=1 2 3 n-i+1
n-1 n 1
<2y H, Ho=) =
i=1 j=1J
<2nH,
< O(nlogn)
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