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Intro and Problem Definition

Last time: sorting in expected O(nlog n) time (randomized quicksort)

> Should already know (from Data Structures) deterministic O(nlog n) algorithms for
sorting (mergesort, heapsort)

Today: two related problems
» Median: Given array A of length n, find the median: [n/2]nd smallest element.

> Selection: Given array A of length n and ke [n] ={1,2,...,n}, find k'th smallest
element.
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Intro and Problem Definition

Last time: sorting in expected O(nlog n) time (randomized quicksort)

> Should already know (from Data Structures) deterministic O(nlog n) algorithms for
sorting (mergesort, heapsort)

Today: two related problems
» Median: Given array A of length n, find the median: [n/2]nd smallest element.

> Selection: Given array A of length n and ke [n] ={1,2,...,n}, find k'th smallest
element.

Can solve both in O(nlog n) time via sorting. Faster?
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n:
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.

Michael Dinitz Lecture 4 September 5, 2024 3/13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.

k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1):
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n/2?

Michael Dinitz Lecture 4 September 5, 2024 3/13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n/2?
> Need to keep track of n/2 smallest.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n/2?

> Need to keep track of n/2 smallest.

> When scanning, see an element, need to determine if one of k smallest. If yes, remove
previous max of the n/2 we've been keeping track of.

> Not easy to do! Foreshadow: would need to use a heap. @(log n)-worst case time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n/2?

> Need to keep track of n/2 smallest.

> When scanning, see an element, need to determine if one of k smallest. If yes, remove
previous max of the n/2 we've been keeping track of.

> Not easy to do! Foreshadow: would need to use a heap. @(log n)-worst case time.

> O(nlog n) worst-case time.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

77777777 )
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.
4. 41 If|L|=k-1:
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
42 if |L| > k - 1: [/L /p[ A J
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).

43 If |L| < k-1: e[ 4 j
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A] =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).
4.3 If |L| < k-1: return R-Quickselect(G, k - |L|-1).

<~ ( (Ll ¢1)
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Quickselect: Correctness

Sketch here: good exercise to do at home!
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Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction (“loop invariant”) that on any call to R-Quickselect(X, a), the element
we're looking for is a@'th smallest of X.

> Base case: first call to R-Quickselect(A, k). Correct by definition.

> Inductive case: suppose was true for call R-Quickselect(Y, b).
> |f we return element: correct
> |f we recurse on L: correct
> |f we recurse on G: correct
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Quickselect: Running Time
Intuition:

Michael Dinitz Lecture 4 September 5, 2024 6/13



Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

> O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

> O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
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> O(log n) recursive calls, but each one on an array of half the size
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Formalize this. Let T(n) be expected # comparisons on array of size n.
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

> O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most

max(T(|L]), T(|G])) = T(max(|L],|G])).
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

> O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most
max(T(|L]), T(|G])) = T (max([L[,|G])).
> |L|,|G| distributed uniformly among [0, n-1].
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

> O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most
max(T(|L]), T(|G])) = T (max([L[,|G])).
> |L|,|G| distributed uniformly among [0, n-1].

> ((_l l&{ oy 2: (L=
T(n)<(n-1)+ Z(:] T (max (i, n—l—l)) ' / b€ lC -y 'l-'l}
nf2-1
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Quickselect: Running Time |
Want to solve recurrence relation T(n) < (n-1) + % 27;’:/2 T(i).
Guess and check: T(n) <4n.
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Quickselect: Running Time Il
Want to solve recurrence relation T(n) < (n-1) + % Z’ iy

Guess and check: T(n) <4n. /

T(n) < (n- 1)+— Z 4i=(n-1)+4.— Z i

ni-n2 ni-n2
n-1 n/2 1
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?

Median-of-medians:
> Split A into n/5 groups of 5 elements each.

» Compute median of each group.

> Let p be the median of the n/5 medians

rl((l l l(l/ I | (¢ / (‘Y "y {NI? q
L/‘f_)& < ﬁ%u/)_ {
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?

Median-of-medians:
> Split A into n/5 groups of 5 elements each.

» Compute median of each group.

> Let p be the median of the n/5 medians

Want to claim: p is a good pivot, and can find p efficiently.
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Median-of-Medians is good pivot

Theorem
|L| and |G| are both at most Tn[10 when p is median of medians. J

e ([ o
[ | [

R
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Median-of-Medians is good pivot

Theorem
|L| and |G| are both at most Tn[10 when p is median of medians. J

Let B be a group (of 5 elements), m median of B: - lml=1-=
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Median-of-Medians is good pivot

Theorem
|L| and |G| are both at most Tn[10 when p is median of medians. J

-~ S

RE

|

Let B be a group (of 5 elements), m median of B: |- )m

P
> If m < p: at least three elements of B (m and two smaller) are in L
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Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most Tn[10 when p is median of medians. J
i

Let B be a group (of b elements), m median of B: |- m< |-

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G
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Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: -l ml=1-=

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p
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Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: -l ml=1-=

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p
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Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B:

m

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p
In

|L|21—’:)-3=:;—8 = |G| < —
|G|2%-3=i—g = |L| < —
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this?
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.
What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)

1. Group A into n/5 groups of 5, and let A’ be an array of size n/5 containing the median
of each group.

2. Let p=BPFRT(A’,n/10), i.e., recursively find the median p of A" (the
median-of-the-medians).
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BPFRT

& N e 3
Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)
1. Group A into n/5 groups of 5, and let A’ be an array of size n/5 containing the median
of each group. O () O]

2. Let p = BPFRT(A’, n/10), i.e., recursively find the median p of A’ (the TCYs) (&7,
median-of-the-medians). J.
3. Split A using p as a pivot into L and G. 0( u) o(.)

4. Recurse on the appropriate piece:
4.1 if |L| = k - 1 then return p.

4.2 if |L| > k - 1 then return BPFRT(L, k). T( f‘tﬂo) T[ Z‘\/‘?’)

4.3 if |L| < k -1 then return BPFRT(G, k - |L|-1).
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
» Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
> Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time TC "‘/7) pf(“/}) tCh
T(n) < T(7n/10) + T(n/5) + cn
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
» Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time
T(n) < T(7n/10) + T(n/5) + cn

Guess T(n) <10cn: / [///

T(n) <10¢(7n/10) + 10c(n/5) + cn =9cn + cn = 10cn
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.

Let T(n) be time on input of size n.
» BPFRT to find pivot takes O(n) time
> Splitting around pivot takes O(n) time

> Each recursive call takes T(n/2) time
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.

Let T(n) be time on input of size n.
» BPFRT to find pivot takes O(n) time
> Splitting around pivot takes O(n) time

> Each recursive call takes T(n/2) time

T(n)=2T(n/2) +cn = T(n) = O(nlogn)
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