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Intro and Problem Definition

Last time: sorting in expected O(n logn) time (randomized quicksort)

� Should already know (from Data Structures) deterministic O(n logn) algorithms for

sorting (mergesort, heapsort)

Today: two related problems

� Median: Given array A of length n, find the median: �n�2�nd smallest element.

� Selection: Given array A of length n and k ∈ [n] = {1,2, . . . ,n}, find k ’th smallest

element.

Can solve both in O(n logn) time via sorting. Faster?
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Warmup

k = 1:

Scan through array, keeping track of smallest. O(n) time.

k = n: Scan through array, keeping track of largest. O(n) time.

k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n�2?
� Need to keep track of n�2 smallest.� When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n�2 we’ve been keeping track of.� Not easy to do! Foreshadow: would need to use a heap. ⇥(logn)-worst case time.

� ⇥(n logn) worst-case time.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):

1. If �A� = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.

4. 4.1 If �L� = k − 1: return p.

4.2 if �L� > k − 1: return R-Quickselect(L,k).
4.3 If �L� < k − 1: return R-Quickselect(G ,k − �L� − 1).
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Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction (“loop invariant”) that on any call to R-Quickselect(X ,a), the element

we’re looking for is a’th smallest of X .

� Base case: first call to R-Quickselect(A,k). Correct by definition.� Inductive case: suppose was true for call R-Quickselect(Y ,b).� If we return element: correct� If we recurse on L: correct� If we recurse on G : correct
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Quickselect: Running Time
Intuition:

� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.

� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons

� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).

� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) + n−1�
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:� Random pivot should be “near middle”, so splits array “approximately in half”.� O(logn) recursive calls, but each one on an array of half the size�⇒ T(n) = T(n�2) + cn �⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.� Splitting around pivot: n − 1 comparisons� Recurse on either L or G �⇒ recursion costs at most

max(T(�L�),T(�G �)) = T(max(�L�, �G �)).� �L�, �G � distributed uniformly among [0,n − 1].
T(n) ≤ (n − 1) + n−1�

i=0
1

n
T(max(i ,n − i − 1))

≤ (n − 1) + n�2−1�
i=0

1

n
T(n − i − 1) + n−1�

i=n�2
1

n
T(i) = (n − 1) + 2

n

n−1�
i=n�2

T(i)
Michael Dinitz Lecture 4 September 5, 2024 6 / 13

up 111 1it
vision mar 1



Quickselect: Running Time II
Want to solve recurrence relation T(n) ≤ (n − 1) + 2

n ∑n−1
i=n�2 T(i).

Guess and check: T(n) ≤ 4n.

T(n) ≤ (n − 1) + 2

n

n−1�
i=n�2

4i = (n − 1) + 4 ⋅ 2
n

n−1�
i=n�2

i

= (n − 1) + 4 ⋅ 2
n

�
�

n−1�
i=1

i − n�2−1�
i=1

i
�
�

= (n − 1) + 4 ⋅ 2
n
�n(n − 1)

2
− (n�2)(n�2 − 1)

2
�

≤ (n − 1) + 4 ⋅ �(n − 1) − n�2 − 1
2
�

≤ (n − 1) + 4�3n
4
� ≤ 4n.
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Deterministic Version

Intuition:

� Randomization worked because it got us a “reasonably good” pivot.

� Simple deterministic pivot (first element, last element, etc.) bad because might not split

array well.

� Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:

� Split A into n�5 groups of 5 elements each.

� Compute median of each group.

� Let p be the median of the n�5 medians

Want to claim: p is a good pivot, and can find p e�ciently.
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Median-of-Medians is good pivot

Theorem

�L� and �G � are both at most 7n�10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
� If m < p: at least three elements of B (m and two smaller) are in L� If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n�10 groups have m < p and n�10 have m > p

�L� ≥ n

10
⋅ 3 = 3n

10
�⇒ �G � ≤ 7n

10

�G � ≥ n

10
⋅ 3 = 3n

10
�⇒ �L� ≤ 7n

10
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Finding Median of Medians

Have n�5 elements (median of each group). Want to find median.

What problem is this?

Median / Selection!

Recursion! Use same algorithm on array of medians.
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A,k)

1. Group A into n�5 groups of 5, and let A
′
be an array of size n�5 containing the median

of each group.

2. Let p = BPFRT(A′,n�10), i.e., recursively find the median p of A
′
(the

median-of-the-medians).

3. Split A using p as a pivot into L and G .

4. Recurse on the appropriate piece:

4.1 if �L� = k − 1 then return p.

4.2 if �L� > k − 1 then return BPFRT(L,k).
4.3 if �L� < k − 1 then return BPFRT(G ,k − �L� − 1).
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.

� Step 1: O(n) time

� Step 2: T(n�5) time

� Step 3: O(n) time

� Step 4: T(7n�10) time

T(n) ≤ T(7n�10) +T(n�5) + cn

Guess T(n) ≤ 10cn:
T(n) ≤ 10c(7n�10) + 10c(n�5) + cn = 9cn + cn = 10cn
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Deterministic O(n logn) Quicksort
Can use this to get deterministic O(n logn)-time Quicksort!

Use BPFRT(A,n�2) to choose median as pivot.

Let T(n) be time on input of size n.

� BPFRT to find pivot takes O(n) time

� Splitting around pivot takes O(n) time

� Each recursive call takes T(n�2) time

T(n) = 2T(n�2) + cn �⇒ T(n) =⇥(n logn)
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