Lecture 4: Linear Time Selection/Median

Michael Dinitz

September 5, 2024 601.433/633 Introduction to Algorithms

э

Intro and Problem Definition

Last time: sorting in expected $O(n \log n)$ time (randomized quicksort)

▶ Should already know (from Data Structures) deterministic $O(n \log n)$ algorithms for sorting (mergesort, heapsort)

Today: two related problems

- **▸** Median: Given array A of length n, find the median: **⌈**n**/**2**⌉**nd smallest element.
- **▸** Selection: Given array A of length n and k **∈ [**n**] = {**1, 2, . . . , n**}**, find k'th smallest element.

医毛囊 医牙囊 医心包

 Ω

Intro and Problem Definition

Last time: sorting in expected $O(n \log n)$ time (randomized quicksort)

▶ Should already know (from Data Structures) deterministic $O(n \log n)$ algorithms for sorting (mergesort, heapsort)

Today: two related problems

- **▸** Median: Given array A of length n, find the median: **⌈**n**/**2**⌉**nd smallest element.
- **▸** Selection: Given array A of length n and k **∈ [**n**] = {**1, 2, . . . , n**}**, find k'th smallest element.

Can solve both in O**(**n log n**)** time via sorting. Faster?

医间周的

 Ω

 $k = 1$:

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time.

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$:

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time.

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$:

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$: keep track of k smallest or $n - k$ largest. $O(n)$ time.

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$: keep track of k smallest or $n - k$ largest. $O(n)$ time.

Does this work when $k = n/2$?

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$: keep track of k smallest or $n - k$ largest. $O(n)$ time.

Does this work when $k = n/2$?

▸ Need to keep track of n**/**2 smallest.

G.

 298

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$: keep track of k smallest or $n - k$ largest. $O(n)$ time.

Does this work when $k = n/2$?

- **▸** Need to keep track of n**/**2 smallest.
- **►** When scanning, see an element, need to determine if one of **k** smallest. If yes, remove previous max of the n**/**2 we've been keeping track of.
	- **▸** Not easy to do! Foreshadow: would need to use a heap. Θ**(**log n**)**-worst case time.

 $k = 1$: Scan through array, keeping track of smallest. $O(n)$ time. $k = n$: Scan through array, keeping track of largest. $O(n)$ time. $k = O(1)$ or $k = n - O(1)$: keep track of k smallest or $n - k$ largest. $O(n)$ time.

Does this work when $k = n/2$?

- **▸** Need to keep track of n**/**2 smallest.
- **►** When scanning, see an element, need to determine if one of **k** smallest. If yes, remove previous max of the n**/**2 we've been keeping track of.
	- **▸** Not easy to do! Foreshadow: would need to use a heap. Θ**(**log n**)**-worst case time.
- **▸** Θ**(**n log n**)** worst-case time.

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect (A, k) :

- 1. If $|A| = 1$, return the element.
- 2. Pick a pivot element p uniformly at random from A .
- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
- 4. 4.1 If **∣**L**∣ =** k **−** 1:

化重新润滑脂

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

- R-Quickselect (A, k) :
	- 1. If $|A| = 1$, return the element.
	- 2. Pick a pivot element p uniformly at random from A .
	- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
	- 4. 4.1 If **∣**L**∣ =** k **−** 1: return p.

 $A \equiv \mathbf{1} \times \mathbf{1} \times \mathbf{1} \times \mathbf{1}$

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

- R -Quickselect (A, k) :
	- 1. If $|A| = 1$, return the element.
	- 2. Pick a pivot element p uniformly at random from A .
	- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
	- 4. 4.1 If **∣**L**∣ =** k **−** 1: return p. 4.2 if **∣**L**∣ >** k **−** 1:

 $\mathcal{A} \cong \mathcal{B} \times \mathcal{A} \cong \mathcal{B}$

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

- R -Quickselect (A, k) :
	- 1. If $|A| = 1$, return the element.
	- 2. Pick a pivot element p uniformly at random from A .
	- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
	- 4. 4.1 If **∣**L**∣ =** k **−** 1: return p. 4.2 if $|L| > k - 1$: return R-Quickselect (L, k) .

 \rightarrow \rightarrow \equiv \rightarrow

 Ω

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

- R -Quickselect (A, k) :
	- 1. If $|A| = 1$, return the element.
	- 2. Pick a pivot element p uniformly at random from A .
	- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
	- 4. 4.1 If **∣**L**∣ =** k **−** 1: return p. 4.2 if $|L| > k - 1$: return R-Quickselect (L, k) . 4.3 **If** $|L| < k - 1$ **:**

医单侧 医骨下的

 Ω

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

- R -Quickselect (A, k) :
	- 1. If $|A| = 1$, return the element.
	- 2. Pick a pivot element p uniformly at random from A .
	- 3. Compare each element of **A** to **p**, creating subarrays **L** of elements less than **p** and **G** of elements greater than p .
	- 4. 4.1 If **∣**L**∣ =** k **−** 1: return p. 4.2 if $|L| > k - 1$: return R-Quickselect (L, k) . 4.3 If **∣**L**∣ <** k **−** 1: return R-Quickselect(G, k **− ∣**L**∣ −** 1).

化重新化重新

Quickselect: Correctness

Sketch here: good exercise to do at home!

Sketch here: good exercise to do at home!

Prove by induction ("loop invariant") that on any call to R-Quickselect(X , a), the element we're looking for is a' th smallest of X .

- **▶** Base case: first call to R-Quickselect(A, k). Correct by definition.
- **▶** Inductive case: suppose was true for call R-Quickselect(\mathbf{Y}, \mathbf{b}).
	- **▸** If we return element: correct
	- **E** If we recurse on \mathbf{I} correct
	- **▸** If we recurse on G: correct

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}$

Quickselect: Running Time Intuition:

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size

 \implies $T(n) = T(n/2) + cn \implies O(n)$ time

D.

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size \implies $T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected $#$ comparisons on array of size n.

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size \implies $T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected $\#$ comparisons on array of size n.

▸ Splitting around pivot: n **−** 1 comparisons

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size \implies $T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected $#$ comparisons on array of size n.

- **▸** Splitting around pivot: n **−** 1 comparisons
- **►** Recurse on either **L** or **G** \implies recursion costs at most $max(T(|L|), T(|G|)) = T(max(|L|, |G|)).$

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size \implies $T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected $#$ comparisons on array of size n.

- **▸** Splitting around pivot: n **−** 1 comparisons
- **►** Recurse on either **L** or **G** \implies recursion costs at most $max(T(|L|), T(|G|)) = T(max(|L|, |G|)).$
- **▸ ∣**L**∣**,**∣**G**∣** distributed uniformly among **[**0, n **−** 1**]**.

Intuition:

- **▸** Random pivot should be "near middle", so splits array "approximately in half".
- **▸** O**(**log n**)** recursive calls, but each one on an array of half the size \implies $T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected $#$ comparisons on array of size n.

- **▸** Splitting around pivot: n **−** 1 comparisons
- **►** Recurse on either **L** or **G** \implies recursion costs at most $max(T(|L|), T(|G|)) = T(max(|L|, |G|)).$

▸ ∣L**∣**,**∣**G**∣** distributed uniformly among **[**0, n **−** 1**]**.

$$
\mathcal{T}(n) \leq (n-1) + \sum_{i=0}^{n-1} \frac{1}{n} \mathcal{T}(\max(i, n-i-1))
$$
\n
$$
\leq (n-1) + \sum_{i=0}^{n/2-1} \frac{1}{n} \mathcal{T}(n-i-1) + \sum_{i=n/2}^{n-1} \frac{1}{n} \mathcal{T}(i) = (n-1) + \sum_{i=n/2}^{2} \sum_{\substack{i=n/2 \text{ where } i \text{ is odd}}^{n-1}} \mathcal{T}(i)
$$
\nMichael Dinitz

\nMichael Dinitz

\nLeture 4

\nLet $n \in \mathbb{N}$, $n \in \mathbb{N}$, and n

Want to solve recurrence relation $T(n) \leq (n-1) + \frac{2}{n} \sum_{i=n}^{n-1}$ $\int_{i=n/2}^{n-1} T(i)$. Guess and check: $T(n) \leq 4n$.

ACAMENTAL E COO

Want to solve recurrence relation $T(n) \leq (n-1) + \frac{2}{n} \sum_{i=n}^{n-1}$ $\int_{i=n/2}^{n-1} T(i)$. Guess and check: $T(n) \leq 4n$.

$$
T(n) \le (n-1) + \frac{2}{n} \sum_{i=n/2}^{n-1} 4i = (n-1) + 4 \cdot \frac{2}{n} \sum_{i=n/2}^{n-1} i
$$

= $(n-1) + 4 \cdot \frac{2}{n} \left(\sum_{i=1}^{n-1} i - \sum_{i=1}^{n/2-1} i \right)$
= $(n-1) + 4 \cdot \frac{2}{n} \left(\frac{n(n-1)}{2} - \frac{(n/2)(n/2-1)}{2} \right)$
 $\le (n-1) + 4 \cdot \left((n-1) - \frac{n/2-1}{2} \right)$
 $\le (n-1) + 4 \left(\frac{3n}{4} \right) \le 4n.$

э

Deterministic Version

Intuition:

- **▸** Randomization worked because it got us a "reasonably good" pivot.
- **▸** Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- **▸** Deterministically find a pivot that's "close" to the middle?

Deterministic Version

Intuition:

- **▸** Randomization worked because it got us a "reasonably good" pivot.
- **▸** Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- **▸** Deterministically find a pivot that's "close" to the middle?

Median-of-medians:

- **▸** Split A into n**/**5 groups of 5 elements each.
- **▸** Compute median of each group.
- **▸** Let p be the median of the n**/**5 medians

 \rightarrow \rightarrow \equiv \rightarrow

 Ω

Deterministic Version

Intuition:

- **▸** Randomization worked because it got us a "reasonably good" pivot.
- **▸** Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- **▸** Deterministically find a pivot that's "close" to the middle?

Median-of-medians:

- **▸** Split A into n**/**5 groups of 5 elements each.
- **▸** Compute median of each group.
- **▸** Let p be the median of the n**/**5 medians

Want to claim: \boldsymbol{p} is a good pivot, and can find \boldsymbol{p} efficiently.

 \rightarrow \Rightarrow \rightarrow

 Ω

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bm{B} be a group (of 5 elements), \bm{m} median of \bm{B} :

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bm{B} be a group (of 5 elements), \bm{m} median of \bm{B} :

$$
\boxed{\qquad \qquad - | - | m | - | - |}
$$

▶ If $m < p$: at least three elements of **B** (*m* and two smaller) are in **L**

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bf{B} be a group (of 5 elements), \bf{m} median of \bf{B} :

$$
\boxed{\qquad \qquad - \mid m \mid - \mid -}
$$

- **▶** If $m < p$: at least three elements of **B** (*m* and two smaller) are in **L**
- **▶** If $m > p$: at least three elements of **B** (*m* and two larger) are in **G**

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bf{B} be a group (of 5 elements), \bf{m} median of \bf{B} :

$$
\boxed{\qquad \qquad - \mid m \mid - \mid - \mid}
$$

- \blacktriangleright If $m < p$: at least three elements of B (m and two smaller) are in L
- \triangleright If $m > p$: at least three elements of **B** (m and two larger) are in **G**

By definition of **p**, $n/10$ groups have $m < p$ and $n/10$ have $m > p$

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bf{B} be a group (of 5 elements), \bf{m} median of \bf{B} :

$$
\boxed{\qquad \qquad - \mid m \mid - \mid -}
$$

- \blacktriangleright If $m < p$: at least three elements of B (m and two smaller) are in L
- \triangleright If $m > p$: at least three elements of **B** (m and two larger) are in **G**

By definition of **p**, $n/10$ groups have $m < p$ and $n/10$ have $m > p$

$$
|L| \ge \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |G| \le \frac{7n}{10}
$$

Theorem

∣L**∣** and **∣**G**∣** are both at most 7n**/**10 when p is median of medians.

Let \bf{B} be a group (of 5 elements), \bf{m} median of \bf{B} :

$$
\boxed{\qquad \qquad - \mid m \mid - \mid - \mid}
$$

- \blacktriangleright If $m < p$: at least three elements of B (m and two smaller) are in L
- \triangleright If $m > p$: at least three elements of **B** (*m* and two larger) are in **G**

By definition of **p**, $n/10$ groups have **m** < **p** and $n/10$ have **m** > **p**

$$
|L| \ge \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |G| \le \frac{7n}{10}
$$

$$
|G| \ge \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |L| \le \frac{7n}{10}
$$

 \rightarrow \rightarrow \rightarrow

Finding Median of Medians

Have n**/**5 elements (median of each group). Want to find median.

What problem is this?

Finding Median of Medians

Have n**/**5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!

Finding Median of Medians

Have n**/**5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.

E.

 299

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

 B PFRT (A, k)

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

 B PFRT (A, k)

- 1. Group A into n**/**5 groups of 5, and let A **′** be an array of size n**/**5 containing the median of each group.
- 2. Let $p = \mathsf{BPTRT}(A', n/10)$, i.e., recursively find the median p of A' (the median-of-the-medians).

イロト イ押ト イヨト イヨト

G.

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

 B PFRT (A, k)

- 1. Group A into n**/**5 groups of 5, and let A **′** be an array of size n**/**5 containing the median of each group.
- 2. Let $p = \mathsf{BPTRT}(A', n/10)$, i.e., recursively find the median p of A' (the median-of-the-medians).
- 3. Split A using p as a pivot into L and G .
- 4. Recurse on the appropriate piece:

```
4.1 if |L| = k - 1 then return p.
4.2 if ∣L∣ > k − 1 then return BPFRT(L, k).
4.3 if |L| < k - 1 then return BPFRT(G, k - |L| - 1).
```
GB 11 Ω

BPFRT Analysis

Let $T(n)$ be (worst-case) running time on **A** of size **n**.

- \triangleright Step 1: $O(n)$ time
- **▸** Step 2: T**(**n**/**5**)** time
- \triangleright Step 3: $O(n)$ time
- **▸** Step 4: T**(**7n**/**10**)** time

G.

 299

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

BPFRT Analysis

Let $T(n)$ be (worst-case) running time on **A** of size **n**.

- \triangleright Step 1: $O(n)$ time
- **▸** Step 2: T**(**n**/**5**)** time
- \triangleright Step 3: $O(n)$ time
- **▸** Step 4: T**(**7n**/**10**)** time

$T(n) \leq T(7n/10) + T(n/5) + cn$

G.

BPFRT Analysis

Let $T(n)$ be (worst-case) running time on **A** of size **n**.

- \triangleright Step 1: $O(n)$ time
- **▸** Step 2: T**(**n**/**5**)** time
- \triangleright Step 3: $O(n)$ time
- **▸** Step 4: T**(**7n**/**10**)** time

$$
\mathcal{T}(n) \leq \mathcal{T}(7n/10) + \mathcal{T}(n/5) + cn
$$

Guess $T(n) \leq 10$ cn:

$$
T(n) \leq 10c(7n/10) + 10c(n/5) + cn = 9cn + cn = 10cn
$$

E.

Can use this to get deterministic O**(**n log n**)**-time Quicksort!

Can use this to get deterministic O**(**n log n**)**-time Quicksort! Use BPFRT(A, n**/**2) to choose median as pivot.

Can use this to get deterministic O**(**n log n**)**-time Quicksort! Use BPFRT(A, n/2) to choose median as pivot.

Let $T(n)$ be time on input of size n .

- **▸** BPFRT to find pivot takes O**(**n**)** time
- **▸** Splitting around pivot takes O**(**n**)** time
- **▸** Each recursive call takes T**(**n**/**2**)** time

Can use this to get deterministic O**(**n log n**)**-time Quicksort! Use BPFRT(A, n/2) to choose median as pivot.

Let $T(n)$ be time on input of size n .

- **▸** BPFRT to find pivot takes O**(**n**)** time
- **▸** Splitting around pivot takes O**(**n**)** time
- **▸** Each recursive call takes T**(**n**/**2**)** time

$$
\mathcal{T}(n) = 2\,\mathcal{T}(n/2) + cn \implies \mathcal{T}(n) = \Theta(n\log n)
$$

医毛囊 医牙骨下的