
Lecture 4: Linear Time Selection/Median

Michael Dinitz

September 5, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 4 September 5, 2024 1 / 13



Intro and Problem Definition

Last time: sorting in expected O(n logn) time (randomized quicksort)

▸ Should already know (from Data Structures) deterministic O(n logn) algorithms for
sorting (mergesort, heapsort)

Today: two related problems

▸ Median: Given array A of length n, find the median: ⌈n/2⌉nd smallest element.

▸ Selection: Given array A of length n and k ∈ [n] = {1,2, . . . ,n}, find k ’th smallest
element.

Can solve both in O(n logn) time via sorting. Faster?

Michael Dinitz Lecture 4 September 5, 2024 2 / 13



Intro and Problem Definition

Last time: sorting in expected O(n logn) time (randomized quicksort)

▸ Should already know (from Data Structures) deterministic O(n logn) algorithms for
sorting (mergesort, heapsort)

Today: two related problems

▸ Median: Given array A of length n, find the median: ⌈n/2⌉nd smallest element.

▸ Selection: Given array A of length n and k ∈ [n] = {1,2, . . . ,n}, find k ’th smallest
element.

Can solve both in O(n logn) time via sorting. Faster?

Michael Dinitz Lecture 4 September 5, 2024 2 / 13



Warmup

k = 1:

Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.

k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n:

Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.

k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1):

keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?

▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.

▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove
previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k = O(1) or k = n −O(1): keep track of k smallest or n − k largest. O(n) time.

Does this work when k = n/2?
▸ Need to keep track of n/2 smallest.
▸ When scanning, see an element, need to determine if one of k smallest. If yes, remove

previous max of the n/2 we’ve been keeping track of.
▸ Not easy to do! Foreshadow: would need to use a heap. Θ(logn)-worst case time.

▸ Θ(n logn) worst-case time.

Michael Dinitz Lecture 4 September 5, 2024 3 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.
4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1:

return p.
4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.

4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.
4.2 if ∣L∣ > k − 1:

return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.
4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).

4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.
4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1:

return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A,k):
1. If ∣A∣ = 1, return the element.

2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If ∣L∣ = k − 1: return p.
4.2 if ∣L∣ > k − 1: return R-Quickselect(L,k).
4.3 If ∣L∣ < k − 1: return R-Quickselect(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 4 / 13



Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction (“loop invariant”) that on any call to R-Quickselect(X ,a), the element
we’re looking for is a’th smallest of X .

▸ Base case: first call to R-Quickselect(A,k). Correct by definition.
▸ Inductive case: suppose was true for call R-Quickselect(Y ,b).

▸ If we return element: correct
▸ If we recurse on L: correct
▸ If we recurse on G : correct

Michael Dinitz Lecture 4 September 5, 2024 5 / 13



Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction (“loop invariant”) that on any call to R-Quickselect(X ,a), the element
we’re looking for is a’th smallest of X .

▸ Base case: first call to R-Quickselect(A,k). Correct by definition.
▸ Inductive case: suppose was true for call R-Quickselect(Y ,b).

▸ If we return element: correct
▸ If we recurse on L: correct
▸ If we recurse on G : correct

Michael Dinitz Lecture 4 September 5, 2024 5 / 13



Quickselect: Running Time
Intuition:

▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).
▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).
▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.

▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).
▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons

▸ Recurse on either L or G Ô⇒ recursion costs at most
max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).

▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).

▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).
▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time
Intuition:
▸ Random pivot should be “near middle”, so splits array “approximately in half”.
▸ O(logn) recursive calls, but each one on an array of half the size
Ô⇒ T(n) = T(n/2) + cn Ô⇒ O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
▸ Splitting around pivot: n − 1 comparisons
▸ Recurse on either L or G Ô⇒ recursion costs at most

max(T(∣L∣),T(∣G ∣)) = T(max(∣L∣, ∣G ∣)).
▸ ∣L∣, ∣G ∣ distributed uniformly among [0,n − 1].

T(n) ≤ (n − 1) +
n−1
∑
i=0

1

n
T(max(i ,n − i − 1))

≤ (n − 1) +
n/2−1
∑
i=0

1

n
T(n − i − 1) +

n−1
∑

i=n/2

1

n
T(i) = (n − 1) +

2

n

n−1
∑

i=n/2
T(i)

Michael Dinitz Lecture 4 September 5, 2024 6 / 13



Quickselect: Running Time II
Want to solve recurrence relation T(n) ≤ (n − 1) + 2

n ∑
n−1
i=n/2 T(i).

Guess and check: T(n) ≤ 4n.

T(n) ≤ (n − 1) +
2

n

n−1
∑

i=n/2
4i = (n − 1) + 4 ⋅

2

n

n−1
∑

i=n/2
i

= (n − 1) + 4 ⋅
2

n
⎛
⎝

n−1
∑
i=1

i −
n/2−1
∑
i=1

i
⎞
⎠

= (n − 1) + 4 ⋅
2

n
(
n(n − 1)

2
−
(n/2)(n/2 − 1)

2
)

≤ (n − 1) + 4 ⋅ ((n − 1) −
n/2 − 1

2
)

≤ (n − 1) + 4(
3n
4
) ≤ 4n.

Michael Dinitz Lecture 4 September 5, 2024 7 / 13



Quickselect: Running Time II
Want to solve recurrence relation T(n) ≤ (n − 1) + 2

n ∑
n−1
i=n/2 T(i).

Guess and check: T(n) ≤ 4n.

T(n) ≤ (n − 1) +
2

n

n−1
∑

i=n/2
4i = (n − 1) + 4 ⋅

2

n

n−1
∑

i=n/2
i

= (n − 1) + 4 ⋅
2

n
⎛
⎝

n−1
∑
i=1

i −
n/2−1
∑
i=1

i
⎞
⎠

= (n − 1) + 4 ⋅
2

n
(
n(n − 1)

2
−
(n/2)(n/2 − 1)

2
)

≤ (n − 1) + 4 ⋅ ((n − 1) −
n/2 − 1

2
)

≤ (n − 1) + 4(
3n
4
) ≤ 4n.

Michael Dinitz Lecture 4 September 5, 2024 7 / 13



Deterministic Version

Intuition:

▸ Randomization worked because it got us a “reasonably good” pivot.

▸ Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.

▸ Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:

▸ Split A into n/5 groups of 5 elements each.

▸ Compute median of each group.

▸ Let p be the median of the n/5 medians

Want to claim: p is a good pivot, and can find p efficiently.

Michael Dinitz Lecture 4 September 5, 2024 8 / 13



Deterministic Version

Intuition:

▸ Randomization worked because it got us a “reasonably good” pivot.

▸ Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.

▸ Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:

▸ Split A into n/5 groups of 5 elements each.

▸ Compute median of each group.

▸ Let p be the median of the n/5 medians

Want to claim: p is a good pivot, and can find p efficiently.

Michael Dinitz Lecture 4 September 5, 2024 8 / 13



Deterministic Version

Intuition:

▸ Randomization worked because it got us a “reasonably good” pivot.

▸ Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.

▸ Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:

▸ Split A into n/5 groups of 5 elements each.

▸ Compute median of each group.

▸ Let p be the median of the n/5 medians

Want to claim: p is a good pivot, and can find p efficiently.

Michael Dinitz Lecture 4 September 5, 2024 8 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −

▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L

▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Median-of-Medians is good pivot

Theorem

∣L∣ and ∣G ∣ are both at most 7n/10 when p is median of medians.

Let B be a group (of 5 elements), m median of B: − − m − −
▸ If m < p: at least three elements of B (m and two smaller) are in L
▸ If m > p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

∣L∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣G ∣ ≤

7n
10

∣G ∣ ≥
n
10
⋅ 3 =

3n
10
Ô⇒ ∣L∣ ≤

7n
10

Michael Dinitz Lecture 4 September 5, 2024 9 / 13



Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this?

Median / Selection!

Recursion! Use same algorithm on array of medians.

Michael Dinitz Lecture 4 September 5, 2024 10 / 13



Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.

Michael Dinitz Lecture 4 September 5, 2024 10 / 13



Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.

Michael Dinitz Lecture 4 September 5, 2024 10 / 13



BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A,k)
1. Group A into n/5 groups of 5, and let A′ be an array of size n/5 containing the median

of each group.

2. Let p = BPFRT(A′,n/10), i.e., recursively find the median p of A′ (the
median-of-the-medians).

3. Split A using p as a pivot into L and G .

4. Recurse on the appropriate piece:

4.1 if ∣L∣ = k − 1 then return p.
4.2 if ∣L∣ > k − 1 then return BPFRT(L,k).
4.3 if ∣L∣ < k − 1 then return BPFRT(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 11 / 13



BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A,k)

1. Group A into n/5 groups of 5, and let A′ be an array of size n/5 containing the median
of each group.

2. Let p = BPFRT(A′,n/10), i.e., recursively find the median p of A′ (the
median-of-the-medians).

3. Split A using p as a pivot into L and G .

4. Recurse on the appropriate piece:

4.1 if ∣L∣ = k − 1 then return p.
4.2 if ∣L∣ > k − 1 then return BPFRT(L,k).
4.3 if ∣L∣ < k − 1 then return BPFRT(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 11 / 13



BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A,k)
1. Group A into n/5 groups of 5, and let A′ be an array of size n/5 containing the median

of each group.

2. Let p = BPFRT(A′,n/10), i.e., recursively find the median p of A′ (the
median-of-the-medians).

3. Split A using p as a pivot into L and G .

4. Recurse on the appropriate piece:

4.1 if ∣L∣ = k − 1 then return p.
4.2 if ∣L∣ > k − 1 then return BPFRT(L,k).
4.3 if ∣L∣ < k − 1 then return BPFRT(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 11 / 13



BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A,k)
1. Group A into n/5 groups of 5, and let A′ be an array of size n/5 containing the median

of each group.

2. Let p = BPFRT(A′,n/10), i.e., recursively find the median p of A′ (the
median-of-the-medians).

3. Split A using p as a pivot into L and G .

4. Recurse on the appropriate piece:

4.1 if ∣L∣ = k − 1 then return p.
4.2 if ∣L∣ > k − 1 then return BPFRT(L,k).
4.3 if ∣L∣ < k − 1 then return BPFRT(G ,k − ∣L∣ − 1).

Michael Dinitz Lecture 4 September 5, 2024 11 / 13



BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
▸ Step 1: O(n) time

▸ Step 2: T(n/5) time

▸ Step 3: O(n) time

▸ Step 4: T(7n/10) time

T(n) ≤ T(7n/10) +T(n/5) + cn

Guess T(n) ≤ 10cn:

T(n) ≤ 10c(7n/10) + 10c(n/5) + cn = 9cn + cn = 10cn

Michael Dinitz Lecture 4 September 5, 2024 12 / 13



BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
▸ Step 1: O(n) time

▸ Step 2: T(n/5) time

▸ Step 3: O(n) time

▸ Step 4: T(7n/10) time

T(n) ≤ T(7n/10) +T(n/5) + cn

Guess T(n) ≤ 10cn:

T(n) ≤ 10c(7n/10) + 10c(n/5) + cn = 9cn + cn = 10cn

Michael Dinitz Lecture 4 September 5, 2024 12 / 13



BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
▸ Step 1: O(n) time

▸ Step 2: T(n/5) time

▸ Step 3: O(n) time

▸ Step 4: T(7n/10) time

T(n) ≤ T(7n/10) +T(n/5) + cn

Guess T(n) ≤ 10cn:

T(n) ≤ 10c(7n/10) + 10c(n/5) + cn = 9cn + cn = 10cn

Michael Dinitz Lecture 4 September 5, 2024 12 / 13



Deterministic O(n logn) Quicksort

Can use this to get deterministic O(n logn)-time Quicksort!

Use BPFRT(A,n/2) to choose median as pivot.

Let T(n) be time on input of size n.
▸ BPFRT to find pivot takes O(n) time

▸ Splitting around pivot takes O(n) time

▸ Each recursive call takes T(n/2) time

T(n) = 2T(n/2) + cn Ô⇒ T(n) =Θ(n logn)

Michael Dinitz Lecture 4 September 5, 2024 13 / 13



Deterministic O(n logn) Quicksort

Can use this to get deterministic O(n logn)-time Quicksort!
Use BPFRT(A,n/2) to choose median as pivot.

Let T(n) be time on input of size n.
▸ BPFRT to find pivot takes O(n) time

▸ Splitting around pivot takes O(n) time

▸ Each recursive call takes T(n/2) time

T(n) = 2T(n/2) + cn Ô⇒ T(n) =Θ(n logn)

Michael Dinitz Lecture 4 September 5, 2024 13 / 13



Deterministic O(n logn) Quicksort

Can use this to get deterministic O(n logn)-time Quicksort!
Use BPFRT(A,n/2) to choose median as pivot.

Let T(n) be time on input of size n.
▸ BPFRT to find pivot takes O(n) time

▸ Splitting around pivot takes O(n) time

▸ Each recursive call takes T(n/2) time

T(n) = 2T(n/2) + cn Ô⇒ T(n) =Θ(n logn)

Michael Dinitz Lecture 4 September 5, 2024 13 / 13



Deterministic O(n logn) Quicksort

Can use this to get deterministic O(n logn)-time Quicksort!
Use BPFRT(A,n/2) to choose median as pivot.

Let T(n) be time on input of size n.
▸ BPFRT to find pivot takes O(n) time

▸ Splitting around pivot takes O(n) time

▸ Each recursive call takes T(n/2) time

T(n) = 2T(n/2) + cn Ô⇒ T(n) =Θ(n logn)

Michael Dinitz Lecture 4 September 5, 2024 13 / 13


