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5.1 Introduction

You should all know a few ways of sorting in O(n log n) time, most notably mergesort and the
version of quicksort that we talked about at the end of last lecture, where we choose a pivot using
the median-of-medians deterministic median-finding algorithm (we’ve also seen that randomized
quicksort achieves this bound in expectation). The fact that this bound keeps popping up leads to
a natural question: is it tight? Is there any hope of giving an O(n)-time algorithm, or even just an
o(n log n)-time algorithm? We’ll see in this lecture that the answer is both yes and no: there are
no sorting algorithms that run in o(n log n) time in the worst case that work like all of the sorting
algorithms we’ve seen so far (i.e., that compare elements), but if we assume some extra structure
in the elements (e.g., if they are integers) then in fact we can sort in linear time.

So far all of the sorting algorithm we’ve seen work in the comparison model : other than rearranging
or moving elements around, all that they do is compare elements. Slightly more formally, we assume
that we are given a (constant-time) algorithm that when given two elements a, b can test if a < b, but
this is the only access that we are given to the elements. This makes algorithms in the comparison
model (such as mergesort or quicksort) extremely general, as they can be used to sort arbitrary
ordered sets where the elements have no extra structure.

On the other hand, lots of things that we sort (e.g., integers or strings) have extra structure. If
you give me two integers a and b, not only can I test if a < b, I can also perform tests like “is a
== 5?” or “is the third digit of a larger than the third digit of b?”. We cannot do tests like this in
the comparison model, as there is no notion of digit or absolute constants such as 5.

5.2 Sorting lower bound

We will now prove one of the most famous lower bounds in algorithms: no algorithm can sort
in time o(n log n) in the comparison model. We will in fact prove the following slightly stronger
theorem:

Theorem 5.2.1 Any sorting algorithm in the comparison model must make at least log(n!) =
Θ(n log n) comparisons in the worst case.

This theorem is a lower bound on the number of comparisons, so we are essentially letting the
algorithm reorder elements, move them around, copy them, etc. for free.

There are a few ways to prove this, which are essentially all equivalent. I’ll present a method based
on decision trees, but there are also other ways of seeing it.

The thing that makes this bound hard is that we want the bound to hold for all algorithms.
So we can’t just assume that the algorithm works by selecting a pivot (like quicksort) or sorting
subarrays recursively (like mergesort). Instead, we need to find a way of reasoning about all possible
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algorithms.

The trick to doing this is to think of the input arrays not as arrays, but as permutations. For
example, suppose we are given the unsorted array A = [23, 14, 2, 5, 76]. This corresponds to the
permutation (3, 2, 0, 1, 4), i.e., the permutation π where π(0) = 3, π(1) = 2, π(2) = 0, π(3) =
1, π(4) = 4. In other words, A[i] is the π(i)’th smallest element: A[0] is the third smallest element,
A[1] is the second smallest, A[2] is the 0’th smallest (i.e., the smallest), A[3] is the first smallest,
and A[4] is the 4th smallest. Note that there is exactly one permutation corresponding to each
input.

Suppose that we knew this permutation (call it π); then we could easily construct the correct sorted
array without any more comparisons by simply scanning through A and setting B[π(i)] = A[i]. On
the other hand, if we could sort A into some array B, then we could construct π by setting π(i) to
the location in B which contains A[i]. This can be done with no extra comparisons if we simply
“tag” each element in the input array with its starting location, so the element in B[i] contains not
just the element itself but also its initial location in A. For example, instead of sorting A we would
instead sort A′ = [(23, 0), (14, 1), (2, 2), (5, 3), (76, 4)] into B′ = [(2, 2), (5, 3), (14, 1), (23, 0), (76, 4)].
Then we could construct π by iterating from i = 0 to n−1 and letting π(B′[i, 1]) = i (where B′[i, 1]
denotes the second element, i.e. the tag, of the i’th pair in B′).

This second fact, that given a sorting algorithm we can construct π without doing any more
comparisons between elements, implies that if we can prove that any algorithm for finding π takes
f(n) comparisons, then any algorithm for sorting must also take f(n) comparisons (since if there
were a sorting algorithm with g(n) < f(n) comparisons then we would also have a computing π
algorithm which only takes g(n) < f(n) comparisons).

So instead of trying to “sort”, let’s think of trying to find a specific (unknown) permutation of n
elements, where the only tool we have available is comparisons that correspond to this permutation.
By the above discussion, this is the exact same problem as sorting: if we can do one of them in
x comparisons, then we can also do the other in x comparisons. So let’s think of trying to prove
lower bounds for this “finding a hidden permutation” problem.

Suppose that we do a comparison of a and b. If a < b then some permutations are not possible
(those which put a after b), while some are. Similarly, if a > b then some permutations are not
possible while some are. Informally, this means that we can think of each comparison as cutting
down the space of possible permutations. We start with all permutations, do some comparison
after which some subset of permutations is still possible, then do another comparison which further
restricts the set of possible permutations, etc. Note that the comparison we choose to make can
depend on the outcome of the previous comparisons (i.e. our algorithm can be adaptive).

It is not hard to see that all of the previous sorting algorithms we have discussed can be put into
this model. Take quicksort, for example. We choose a pivot, and the next n − 1 comparisons are
just comparing each element to the pivot. We then recurse on L, picking a pivot and comparing
all elements in L to that pivot, etc. Once we return from the recursive call to L (having done some
collection of comparisons), we pick a pivot for G and compare everything to that, and continuing
down the recursion. At the end, we will have done some set of comparisons, the outcome of which
will uniquely determine the correct permutation.
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A very natural way to model this kind of algorithm is as a decision tree. Each node in the tree
corresponds to a comparison, and there are two children corresponding to the outcome of the com-
parison. Any sorting algorithm cannot stop when there are still multiple permutations consistent
with the comparisons it has made so far, and thus each leaf of this tree is a single permutation
which must be uniquely identified by the outcomes corresponding to the path from it up to the
root.

Let’s do a small example, with n = 3 and an input array A. Then there are six possible input
orderings:

(0, 1, 2), (0, 2, 3), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

Suppose our algorithm first tests whether A[0] < A[1]. If it is, then there are still three possible
input orderings ((0, 1, 2), (0, 2, 1), (1, 2, 0)). If it is not, then there are also still three possible input
orderings. Depending on the outcome, we will do more comparisons in order to narrow down the
possibilities until we can eventually figure out what the input permutation actually is (an informal
way to think about this is as a game of “20 questions”). So our sorting algorithm might correspond
to a decision tree which looks like:

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Given a tree, the number of comparisons it makes in the worst case is simply its depth, i.e. the
maximum over all leaves of their distance from the root. What is the minimum depth possible?
Since each leaf corresponds to a unique permutation there must be n! leaves, and since the decision
tree is binary this means the depth must be at least log(n!) = Θ(n log n). That’s the sorting lower
bound!
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5.3 Linear-time sorting

If the sorting lower bound implies that any sorting algorithm must make Ω(n log n) comparisons,
how can we hope for a linear-time algorithm? The trick is to leave the comparison model, and
give ourselves access to the elements beyond simple comparisons. For the rest of today, we will
talk about integers, but most of this can be applied to strings or other data that has some simple
representation.

5.3.1 Counting sort / Bucket sort

We’ve generally been assuming that all elements are distinct. What if we stop making this assump-
tion? Moreover, what if in fact almost the opposite is true: all values are within a very small range?
For example, suppose we are sorting n integers, but they all take one of k values (e.g. maybe they
all lie in {1, . . . , k}). Then we can simply maintain a count for each possible value of the number
of times it appears in the array. We then simply go through the values from smallest to largest,
outputting the correct number of copies.

The running time of this algorithm is clearly O(n + k): we need to initialize an array of length k
to be all 0’s, and then seeing each element and increasing the count takes time O(n), and going
through the count array to output the right values also takes time O(n). One note about something
which will be important later: it looks like we can just get rid of the k, but we can’t. If k is larger
than n then you might try to just maintain a hash table or something similar to only need to store
the (at most) n values which have nonzero count, but the fact that we need to scan this in the end
from smallest to largest means we have to use an associative array data structure which support an
operation like findMin(), i.e. a priority queue. This makes some operation (either inserts or deletes)
take Ω(log n) time, which we’re trying to avoid.

Another important feature is that we can make this algorithm stable: if two elements are tied,
then their ordering is preserved after sorting. In other words, if a = b and a comes before b in the
unsorted array, then a will also come before b in the sorted array. As defined, counting sort just
keeps counts of the values rather than storing the objects with those values (which might be what
we want if we’re sorting longer records), but it is easy to have each entry in the array be (say) a
pointer to the first element in a linked list of the items with that same value. By inserting at the
end of the list (which we can still do in constant time by also keeping pointers to the end of the list
and the element before the end), when we iterate through to create the sorted array we preserve
the relative orders of tied items.

5.3.2 Radix Sort

Counting sort is great when k is small. But what if k is larger than n? For example, what if
k = n3? We will design a different algorithm, radix sort, which will use counting sort as a black
box but will sort in O(n) time (with a few caveats).

Let’s start somewhat concretely. Suppose that we represent each integer using its decimal (i.e. base
10) expansion, and let’s assume that all integers have the same number of digits (i.e. small integers
are padded out with 0s to have the same number of digits). One obvious thing we could do is put
the elements in buckets by their most significant digit (i.e. do bucket sort on the most significant
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digit), recursively sort each bucket where we cut off the most significant digit, and then output
the buckets in order from the largest most significant digit to the smallest. In other words, we do
bucket sort on the digits from most significant to least significant, each time restricting ourselves
to the bucket under consideration. This algorithm is called radix sort, since we operate one digit
at a time. Let’s do an example:

353 
457 
657 
839 
436 
720 
355

353 
355

457 
436

657

720

839

353 
355

436

457

657

720

839

353

355

436

457

657

720

839

This algorithm works, but is somewhat clunky. For example, we need to use up a lot of memory to
partition the items into buckets, since we always have to remember the full set of buckets (to make
sure that we only run the sort inside of each bucket). Somewhat surprisingly, we can actually sort
without buckets by sorting from the least significant digit to the most ! That is, we first sort based
on the last digit, then sort based on the next-to-last digit, then the third-to-last, etc. As long as
the sort we use is stable (as is the version of bucket sort we discussed), this will end up giving the
correct sorted array.

353 
457 
657 
839 
436 
720 
355

720 
353 
355 
436 
457 
657 
839

720 
436 
839 
353 
355 
457 
657

353 
355 
436 
457 
657 
720 
839

Theorem 5.3.1 Radix sort from least significant to most significant is correct if the sort used on
each digit is stable.

Proof: We can use induction on the number of digits we have sorted. After we sort the least
significant digits, the items are correctly sorted by their least significant digit (by definition). Now
suppose that the elements are correctly sorted based on their last i digits. In other words, for each
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number we look at the at the last i digits and interpret them as a number between 0 and 10i − 1,
and we assume that the (full) numbers are sorted correctly based just on these. Then when we sort
the (i+1)st least significant digit, the values with different (i+1)st least significant digits become
correctly sorted, and values with the same (i + 1)st least significant digit become correctly sorted
because we use a stable sort and by induction they were already correctly sorted based on their
last i digits. So the induction holds, and at the end of the process all values are correctly sorted.

Note that by sorting from least significant digit to most we avoided all of the complications of
bucketing. This doesn’t matter much asymptotically, but is nice for the constants and makes it
easier to implement. It’s also just a really slick algorithm, which feels a lot less hack-y.

Running time: The most interesting thing about radix sort is its running time. It’s not too
hard to analyze the version we came up with, particularly the least-significant first version. If there
are d digits, we do d bucket sorts, and each digit can take one of 10 values. So the total time is
d(n + k) = d(n + 10). This doesn’t seem like much of an improvement since d ≥ log10 n (if all
integers are distinct), so the running time is still Θ(n log n). However, there is a sense in which we
can already see an improvement: if every number one of the n numbers uses Ω(d) bits, then we
could think of the “size” of the input as N = Ω(dn), in which case we are already running in time
linear in the “size” of the input.

But can we achieve running time of O(n), not just O(dn)? In some sense this requires “cheating”,
since if it takes one unit of time to look at one digit, then just looking at the input already takes
Ω(dn) time. But what if I give you the ability not just to look at one digit at time, but to actually
look at “groups” of digits in one unit of time? To instantiate this, what if we consider b digits
at a time. In other words, we first bucket sort based on the last b digits (considered as a number
between 0 and 10b − 1), then the next b digits, etc. Then in each bucket sort there are k = 10b

possible values, and we have to do d/b bucket sorts. Thus the total number of comparisons becomes

d

b

(
n+ 10b

)
This is great! If the number of digits isn’t too much larger than log n, we can plug in b = log n
and we get a linear time sorting algorithm. Slightly more formally, if d ≤ O(log n) then if we set
b = log10 n the number of comparisons becomes O(n).

So, for example, suppose that we are trying to sort a collection of integers which we know are
between 0 and n9. Then they should have at most 9 log10 n = O(log n) digits, so if we use b = log10 n
the total number of comparisons is at most 9(n+ n) = 18n.

A few notes about this. First, I’ve done this with digits and base 10, but clearly on a real computer
it’s more efficient to use bits and base 2. Base 10 is traditionally used when we think of radix
sort (but not when we implement it) mostly for historical reasons. Second, we clearly “cheated”
somewhat – we are assuming that it costs 1 comparison to compare bits, but also that it only costs
1 comparison to compare b-bit numbers. So we need to be a little careful when we claim that radix
sort is linear time.
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