
Lecture 5: Sorting Lower Bound and “Linear-Time” Sorting

Michael Dinitz

September 10, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 5: Sorting September 10, 2024 1 / 21

Reminders

HW2 due on Thursday!

Remember:

▸ Include your group members on the first page

▸ Typeset your solutions

▸ Label your pages in gradescope

Michael Dinitz Lecture 5: Sorting September 10, 2024 2 / 21

Introduction

Lots of ways of sorting in O(n logn) time: mergesort, heapsort, randomized quicksort,
deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better?

No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two
elements. No other information about elements.

▸ All algorithms we’ve seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time Ω(n logn).

Yes: If we assume extra structure for the elements, can do sorting in O(n) time∗

Michael Dinitz Lecture 5: Sorting September 10, 2024 3 / 21

Introduction

Lots of ways of sorting in O(n logn) time: mergesort, heapsort, randomized quicksort,
deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No!

And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two
elements. No other information about elements.

▸ All algorithms we’ve seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time Ω(n logn).

Yes: If we assume extra structure for the elements, can do sorting in O(n) time∗

Michael Dinitz Lecture 5: Sorting September 10, 2024 3 / 21

Introduction

Lots of ways of sorting in O(n logn) time: mergesort, heapsort, randomized quicksort,
deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two
elements. No other information about elements.

▸ All algorithms we’ve seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time Ω(n logn).

Yes: If we assume extra structure for the elements, can do sorting in O(n) time∗

Michael Dinitz Lecture 5: Sorting September 10, 2024 3 / 21

Introduction

Lots of ways of sorting in O(n logn) time: mergesort, heapsort, randomized quicksort,
deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two
elements. No other information about elements.

▸ All algorithms we’ve seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time Ω(n logn).

Yes: If we assume extra structure for the elements, can do sorting in O(n) time∗

Michael Dinitz Lecture 5: Sorting September 10, 2024 3 / 21

Introduction

Lots of ways of sorting in O(n logn) time: mergesort, heapsort, randomized quicksort,
deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two
elements. No other information about elements.

▸ All algorithms we’ve seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time Ω(n logn).

Yes: If we assume extra structure for the elements, can do sorting in O(n) time∗

Michael Dinitz Lecture 5: Sorting September 10, 2024 3 / 21

Sorting Lower Bound

Michael Dinitz Lecture 5: Sorting September 10, 2024 4 / 21

Statement

Theorem

Any sorting algorithm in the comparison model must make at least log(n!) =Θ(n logn)
comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse!
Allows algorithm to reorder elements, copy them, move them, etc. for free.

Why is this hard?

▸ Lower bound needs to hold for all algorithms

▸ How can we simultaneously reason about algorithms as different as mergesort, quicksort,
heapsort, . . . ?

Michael Dinitz Lecture 5: Sorting September 10, 2024 5 / 21

Statement

Theorem

Any sorting algorithm in the comparison model must make at least log(n!) =Θ(n logn)
comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse!
Allows algorithm to reorder elements, copy them, move them, etc. for free.

Why is this hard?

▸ Lower bound needs to hold for all algorithms

▸ How can we simultaneously reason about algorithms as different as mergesort, quicksort,
heapsort, . . . ?

Michael Dinitz Lecture 5: Sorting September 10, 2024 5 / 21

Sorting as Permutations

Think of an array A as a permutation: A[i] is the π(i)’th smallest element

A = [23,14,2,5,76]

Corresponds to π = (3,2,0,1,4):

π(0) = 3 π(1) = 2 π(2) = 0 π(3) = 1 π(4) = 4

Lemma

Given A with ∣A∣ = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Michael Dinitz Lecture 5: Sorting September 10, 2024 6 / 21

Sorting as Permutations

Think of an array A as a permutation: A[i] is the π(i)’th smallest element

A = [23,14,2,5,76]

Corresponds to π = (3,2,0,1,4):

π(0) = 3 π(1) = 2 π(2) = 0 π(3) = 1 π(4) = 4

Lemma

Given A with ∣A∣ = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Michael Dinitz Lecture 5: Sorting September 10, 2024 6 / 21

Sorting As Permutations (cont’d)

Lemma

Given A with ∣A∣ = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Proof Sketch.
▸ “Tag” each element of A with index:
[23,14,2,5,76] → [(23,0), (14,1), (2,2), (5,3), (76,4)]

▸ Sort tagged A into tagged B with T(n) comparisons:
[(2,2), (5,3), (14,1), (23,0), (76,4)]

▸ Iterate through to get π: π(2) = 0,π(3) = 1,π(1) = 2,π(0) = 3,π(4) = 4

Corollary

If need at least T(n) comparisons to find π, need at least T(n) comparisons to sort!

Michael Dinitz Lecture 5: Sorting September 10, 2024 7 / 21

Sorting As Permutations (cont’d)

Lemma

Given A with ∣A∣ = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Proof Sketch.
▸ “Tag” each element of A with index:
[23,14,2,5,76] → [(23,0), (14,1), (2,2), (5,3), (76,4)]

▸ Sort tagged A into tagged B with T(n) comparisons:
[(2,2), (5,3), (14,1), (23,0), (76,4)]

▸ Iterate through to get π: π(2) = 0,π(3) = 1,π(1) = 2,π(0) = 3,π(4) = 4

Corollary

If need at least T(n) comparisons to find π, need at least T(n) comparisons to sort!

Michael Dinitz Lecture 5: Sorting September 10, 2024 7 / 21

Generic Algorithm

Want to show that it takes Ω(n logn) comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

Arbitrary algorithm:

▸ Starts with some comparison (e.g., compares A[0] to A[1])
▸ Rules out some possible permutations!

▸ If A[0] < A[1] then π(0) < π(1)
▸ If A[0] > A[1] then π(1) > π(0)

▸ Depending on outcome, choose next comparison to make.

▸ Continue until only one possible permutation.

Remind you of anything?

Michael Dinitz Lecture 5: Sorting September 10, 2024 8 / 21

Generic Algorithm

Want to show that it takes Ω(n logn) comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

Arbitrary algorithm:

▸ Starts with some comparison (e.g., compares A[0] to A[1])
▸ Rules out some possible permutations!

▸ If A[0] < A[1] then π(0) < π(1)
▸ If A[0] > A[1] then π(1) > π(0)

▸ Depending on outcome, choose next comparison to make.

▸ Continue until only one possible permutation.

Remind you of anything?

Michael Dinitz Lecture 5: Sorting September 10, 2024 8 / 21

Generic Algorithm

Want to show that it takes Ω(n logn) comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

Arbitrary algorithm:

▸ Starts with some comparison (e.g., compares A[0] to A[1])
▸ Rules out some possible permutations!

▸ If A[0] < A[1] then π(0) < π(1)
▸ If A[0] > A[1] then π(1) > π(0)

▸ Depending on outcome, choose next comparison to make.

▸ Continue until only one possible permutation.

Remind you of anything?

Michael Dinitz Lecture 5: Sorting September 10, 2024 8 / 21

Decision Trees
Model any algorithm as a binary decision tree
▸ Internal nodes: comparisons
▸ Leaves: permutations

Example: n = 3. Six possible permutations.

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Max # comparisons: 3

Michael Dinitz Lecture 5: Sorting September 10, 2024 9 / 21

Decision Trees
Model any algorithm as a binary decision tree
▸ Internal nodes: comparisons
▸ Leaves: permutations

Example: n = 3. Six possible permutations.

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Max # comparisons: 3

Michael Dinitz Lecture 5: Sorting September 10, 2024 9 / 21

Decision Trees
Model any algorithm as a binary decision tree
▸ Internal nodes: comparisons
▸ Leaves: permutations

Example: n = 3. Six possible permutations.

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Max # comparisons:

3

Michael Dinitz Lecture 5: Sorting September 10, 2024 9 / 21

Decision Trees
Model any algorithm as a binary decision tree
▸ Internal nodes: comparisons
▸ Leaves: permutations

Example: n = 3. Six possible permutations.

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Max # comparisons: 3
Michael Dinitz Lecture 5: Sorting September 10, 2024 9 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons = depth of tree

≥ log2(# leaves)

= log2(n!)
=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons

= depth of tree

≥ log2(# leaves)

= log2(n!)
=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons = depth of tree

≥ log2(# leaves)

= log2(n!)
=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons = depth of tree

≥ log2(# leaves)

= log2(n!)
=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons = depth of tree

≥ log2(# leaves)

= log2(n!)

=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Finishing Up

A[0] : A[1]

A[1] : A[2] A[0] : A[2]

A[0] : A[2] A[1] : A[2](0,1,2)

(0,2,1) (1,2,0)

(1,0,2)

(2,0,1) (2,1,0)

<

<

<

<

<

>

>

>

>

>

Scale to general n. Consider arbitrary decision tree.

Max # comparisons = depth of tree

≥ log2(# leaves)

= log2(n!)
=Θ(n logn)

Michael Dinitz Lecture 5: Sorting September 10, 2024 10 / 21

Sorting Lower Bound Summary

Theorem

Every sorting algorithm in the comparison model must make at least log(n!) =Θ(n logn)
comparisons (in the worst case).

Proof Sketch.

1. Lower bound on finding permutation π Ô⇒ lower bound on sorting

2. Any algorithm for finding π is a binary decision tree with n! leaves.
3. Any binary decision tree with n! leaves has depth ≥ log(n!) =Θ(n logn)
Ô⇒ Every algorithm has worst case number of comparisons at least Θ(n logn).

Michael Dinitz Lecture 5: Sorting September 10, 2024 11 / 21

“Linear-Time” Sorting

Michael Dinitz Lecture 5: Sorting September 10, 2024 12 / 21

Bypassing the Lower Bound

What if we’re not in the comparison model?

▸ Can do more than just compare elements.

Main example: integers.

▸ What is the 3rd bit of A[0]?
▸ Is A[0] ≪ k larger than A[1] ≫ c?
▸ Is A[0] even?

Same ideas apply to letters, strings, etc.

Michael Dinitz Lecture 5: Sorting September 10, 2024 13 / 21

Counting Sort

Suppose A consists of n integers, all in {0,1, . . . ,k − 1}.

Counting Sort:

▸ Maintain an array B of length k initialized to all 0

▸ Scan through A and increment B[A[i]].
▸ Scan through B, output i exactly B[i] times.

Correctness: Obvious

Running time: O(n + k)

Michael Dinitz Lecture 5: Sorting September 10, 2024 14 / 21

Counting Sort

Suppose A consists of n integers, all in {0,1, . . . ,k − 1}.

Counting Sort:

▸ Maintain an array B of length k initialized to all 0

▸ Scan through A and increment B[A[i]].
▸ Scan through B, output i exactly B[i] times.

Correctness: Obvious

Running time: O(n + k)

Michael Dinitz Lecture 5: Sorting September 10, 2024 14 / 21

Counting Sort

Suppose A consists of n integers, all in {0,1, . . . ,k − 1}.

Counting Sort:

▸ Maintain an array B of length k initialized to all 0

▸ Scan through A and increment B[A[i]].
▸ Scan through B, output i exactly B[i] times.

Correctness: Obvious

Running time: O(n + k)

Michael Dinitz Lecture 5: Sorting September 10, 2024 14 / 21

Counting Sort

Suppose A consists of n integers, all in {0,1, . . . ,k − 1}.

Counting Sort:

▸ Maintain an array B of length k initialized to all 0

▸ Scan through A and increment B[A[i]].
▸ Scan through B, output i exactly B[i] times.

Correctness: Obvious

Running time:

O(n + k)

Michael Dinitz Lecture 5: Sorting September 10, 2024 14 / 21

Counting Sort

Suppose A consists of n integers, all in {0,1, . . . ,k − 1}.

Counting Sort:

▸ Maintain an array B of length k initialized to all 0

▸ Scan through A and increment B[A[i]].
▸ Scan through B, output i exactly B[i] times.

Correctness: Obvious

Running time: O(n + k)

Michael Dinitz Lecture 5: Sorting September 10, 2024 14 / 21

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

▸ Each object has a key: integer in {0,1, . . . ,k − 1}
▸ A consists of n objects

Bucket Sort:

▸ Same idea as counting sort, but B[i] is bucket of objects with key i
▸ Bucket is a linked list with pointers to beginning and end

▸ Insert at end of list, using end pointer.

▸ For output, go through each bucket in order.

Running time: O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

Michael Dinitz Lecture 5: Sorting September 10, 2024 15 / 21

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

▸ Each object has a key: integer in {0,1, . . . ,k − 1}
▸ A consists of n objects

Bucket Sort:

▸ Same idea as counting sort, but B[i] is bucket of objects with key i
▸ Bucket is a linked list with pointers to beginning and end

▸ Insert at end of list, using end pointer.

▸ For output, go through each bucket in order.

Running time: O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

Michael Dinitz Lecture 5: Sorting September 10, 2024 15 / 21

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

▸ Each object has a key: integer in {0,1, . . . ,k − 1}
▸ A consists of n objects

Bucket Sort:

▸ Same idea as counting sort, but B[i] is bucket of objects with key i
▸ Bucket is a linked list with pointers to beginning and end

▸ Insert at end of list, using end pointer.

▸ For output, go through each bucket in order.

Running time:

O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

Michael Dinitz Lecture 5: Sorting September 10, 2024 15 / 21

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

▸ Each object has a key: integer in {0,1, . . . ,k − 1}
▸ A consists of n objects

Bucket Sort:

▸ Same idea as counting sort, but B[i] is bucket of objects with key i
▸ Bucket is a linked list with pointers to beginning and end

▸ Insert at end of list, using end pointer.

▸ For output, go through each bucket in order.

Running time: O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

Michael Dinitz Lecture 5: Sorting September 10, 2024 15 / 21

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

▸ Each object has a key: integer in {0,1, . . . ,k − 1}
▸ A consists of n objects

Bucket Sort:

▸ Same idea as counting sort, but B[i] is bucket of objects with key i
▸ Bucket is a linked list with pointers to beginning and end

▸ Insert at end of list, using end pointer.

▸ For output, go through each bucket in order.

Running time: O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

Michael Dinitz Lecture 5: Sorting September 10, 2024 15 / 21

Radix Sort: Setup

What if k is much larger than n, e.g., k =Θ(n2)?

Radix sort: O(n) time∗ for this case

Setup:

▸ Numbers represented base 10 for historical reasons (all works fine in binary)

▸ Assume all numbers have exactly d digits (for simplicity)

If you were sorting cards, with a number on each card, what might you do?

Michael Dinitz Lecture 5: Sorting September 10, 2024 16 / 21

Radix Sort: Setup

What if k is much larger than n, e.g., k =Θ(n2)?

Radix sort: O(n) time∗ for this case

Setup:

▸ Numbers represented base 10 for historical reasons (all works fine in binary)

▸ Assume all numbers have exactly d digits (for simplicity)

If you were sorting cards, with a number on each card, what might you do?

Michael Dinitz Lecture 5: Sorting September 10, 2024 16 / 21

Radix Sort: Setup

What if k is much larger than n, e.g., k =Θ(n2)?

Radix sort: O(n) time∗ for this case

Setup:

▸ Numbers represented base 10 for historical reasons (all works fine in binary)

▸ Assume all numbers have exactly d digits (for simplicity)

If you were sorting cards, with a number on each card, what might you do?

Michael Dinitz Lecture 5: Sorting September 10, 2024 16 / 21

Radix Sort: Setup

What if k is much larger than n, e.g., k =Θ(n2)?

Radix sort: O(n) time∗ for this case

Setup:

▸ Numbers represented base 10 for historical reasons (all works fine in binary)

▸ Assume all numbers have exactly d digits (for simplicity)

If you were sorting cards, with a number on each card, what might you do?

Michael Dinitz Lecture 5: Sorting September 10, 2024 16 / 21

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

353
457
657
839
436
720
355

353
355

457
436

657

720

839

353
355

436

457

657

720

839

353

355

436

457

657

720

839

Works, but clunky

Michael Dinitz Lecture 5: Sorting September 10, 2024 17 / 21

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

353
457
657
839
436
720
355

353
355

457
436

657

720

839

353
355

436

457

657

720

839

353

355

436

457

657

720

839

Works, but clunky

Michael Dinitz Lecture 5: Sorting September 10, 2024 17 / 21

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

353
457
657
839
436
720
355

353
355

457
436

657

720

839

353
355

436

457

657

720

839

353

355

436

457

657

720

839

Works, but clunky

Michael Dinitz Lecture 5: Sorting September 10, 2024 17 / 21

Radix-Sort: Algorithm (II)

More elegant (and surprising): one bucket, sorting from least significant digit to most!

353
457
657
839
436
720
355

720
353
355
436
457
657
839

720
436
839
353
355
457
657

353
355
436
457
657
720
839

For iteration i , use bucket sort where key is i ’th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is
stable.

Michael Dinitz Lecture 5: Sorting September 10, 2024 18 / 21

Radix-Sort: Algorithm (II)

More elegant (and surprising): one bucket, sorting from least significant digit to most!

353
457
657
839
436
720
355

720
353
355
436
457
657
839

720
436
839
353
355
457
657

353
355
436
457
657
720
839

For iteration i , use bucket sort where key is i ’th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is
stable.

Michael Dinitz Lecture 5: Sorting September 10, 2024 18 / 21

Radix-Sort: Algorithm (II)

More elegant (and surprising): one bucket, sorting from least significant digit to most!

353
457
657
839
436
720
355

720
353
355
436
457
657
839

720
436
839
353
355
457
657

353
355
436
457
657
720
839

For iteration i , use bucket sort where key is i ’th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is
stable.

Michael Dinitz Lecture 5: Sorting September 10, 2024 18 / 21

Radix-Sort: Algorithm (II)

More elegant (and surprising): one bucket, sorting from least significant digit to most!

353
457
657
839
436
720
355

720
353
355
436
457
657
839

720
436
839
353
355
457
657

353
355
436
457
657
720
839

For iteration i , use bucket sort where key is i ’th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is
stable.

Michael Dinitz Lecture 5: Sorting September 10, 2024 18 / 21

Least-Significant Radix Sort: Correctness

Proof.

Claim: After i ’th iteration, correctly sorted by last i digits (interpreted as # in [0,10i − 1]).

Induction on i .

Base case: After first iteration, correctly sorted by last digit

Induction:

▸ Suppose correct for i
▸ After i + 1 sort:

▸ If two numbers have different i + 1 digits, now correct.
▸ If two number have same i + 1 digit, were correct and still correct by stability.

Michael Dinitz Lecture 5: Sorting September 10, 2024 19 / 21

Least-Significant Radix Sort: Correctness

Proof.

Claim: After i ’th iteration, correctly sorted by last i digits (interpreted as # in [0,10i − 1]).
Induction on i .

Base case: After first iteration, correctly sorted by last digit

Induction:

▸ Suppose correct for i
▸ After i + 1 sort:

▸ If two numbers have different i + 1 digits, now correct.
▸ If two number have same i + 1 digit, were correct and still correct by stability.

Michael Dinitz Lecture 5: Sorting September 10, 2024 19 / 21

Least-Significant Radix Sort: Correctness

Proof.

Claim: After i ’th iteration, correctly sorted by last i digits (interpreted as # in [0,10i − 1]).
Induction on i .

Base case: After first iteration, correctly sorted by last digit

Induction:

▸ Suppose correct for i
▸ After i + 1 sort:

▸ If two numbers have different i + 1 digits, now correct.
▸ If two number have same i + 1 digit, were correct and still correct by stability.

Michael Dinitz Lecture 5: Sorting September 10, 2024 19 / 21

Least-Significant Radix Sort: Correctness

Proof.

Claim: After i ’th iteration, correctly sorted by last i digits (interpreted as # in [0,10i − 1]).
Induction on i .

Base case: After first iteration, correctly sorted by last digit

Induction:

▸ Suppose correct for i
▸ After i + 1 sort:

▸ If two numbers have different i + 1 digits, now correct.
▸ If two number have same i + 1 digit, were correct and still correct by stability.

Michael Dinitz Lecture 5: Sorting September 10, 2024 19 / 21

Least-Significant Radix Sort: Correctness

Proof.

Claim: After i ’th iteration, correctly sorted by last i digits (interpreted as # in [0,10i − 1]).
Induction on i .

Base case: After first iteration, correctly sorted by last digit

Induction:

▸ Suppose correct for i
▸ After i + 1 sort:

▸ If two numbers have different i + 1 digits, now correct.
▸ If two number have same i + 1 digit, were correct and still correct by stability.

Michael Dinitz Lecture 5: Sorting September 10, 2024 19 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts:

d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d

Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort:

O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).

Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Least-Significant Radix Sort: Running Time

Recall have n numbers, all numbers have d digits.

bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)

Is this good? Bad? In between?
If all numbers distinct, d ≥ log10 n Ô⇒ total time O(n logn)

Bad: not O(n) time!
Good: “Size of input” is N = nd , so linear in size of input!

Improve to O(n)?

Michael Dinitz Lecture 5: Sorting September 10, 2024 20 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts:

d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b

Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort:

O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

Fast Radix Sort
Change to go b digits at a time instead of just 1.

▸ Kind of cheating: look at b digits in constant time.

▸ Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10b)

Total time: O (d
b (n + 10

b))

Set b = log10 n. If d = O(logn), then time

O (
d

log10 n
(n + n)) = O(n)

Example: sorting integers between 0 and n10. Then d should be about log10 n10 = 10 log10 n,
as required.

Michael Dinitz Lecture 5: Sorting September 10, 2024 21 / 21

