Lecture 5: Sorting Lower Bound and "Linear-Time" Sorting

Michael Dinitz

September 10, 2024 601.433/633 Introduction to Algorithms

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

4 0 8

Reminders

HW2 due on Thursday!

Remember:

- **▸** Include your group members on the first page
- **▸** Typeset your solutions
- **▸** Label your pages in gradescope

 $A \equiv A \cup A \equiv A$

 \leftarrow \leftarrow \leftarrow

4 0 8

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better?

4 0 8

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No!

4 0 8

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

4 0 8

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two elements. No other information about elements.

▸ All algorithms we've seen so far have been in this model

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, . . .

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two elements. No other information about elements.

▸ All algorithms we've seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time $Ω(n \log n)$.

Yes: If we assume extra structure for the elements, can do sorting in O**(**n**)** time**[∗]**

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

Sorting Lower Bound

重

Statement

Theorem

Any sorting algorithm in the comparison model must make at least log**(**n!**) =** Θ**(**n log n**)** comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse! Allows algorithm to reorder elements, copy them, move them, etc. for free.

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Statement

Theorem

Any sorting algorithm in the comparison model must make at least log**(**n!**) =** Θ**(**n log n**)** comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse! Allows algorithm to reorder elements, copy them, move them, etc. for free.

Why is this hard?

- **▸** Lower bound needs to hold for all algorithms
- **▸** How can we simultaneously reason about algorithms as different as mergesort, quicksort, heapsort, ...?

- 4 重 8 - 4 重 8

Sorting as Permutations

Think of an array **A** as a *permutation*: $A[i]$ is the $\pi(i)$ 'th smallest element

A **= [**23, 14, 2, 5, 76**]**

Corresponds to $\pi = (3, 2, 0, 1, 4)$:

 $\pi(0) = 3$ $\pi(1) = 2$ $\pi(2) = 0$ $\pi(3) = 1$ $\pi(4) = 4$

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \oplus \mathbf{A}$

Sorting as Permutations

Think of an array **A** as a *permutation*: $A[i]$ is the $\pi(i)$ 'th smallest element

A **= [**23, 14, 2, 5, 76**]**

Corresponds to $\pi = (3, 2, 0, 1, 4)$:

 $\pi(0) = 3$ $\pi(1) = 2$ $\pi(2) = 0$ $\pi(3) = 1$ $\pi(4) = 4$

Lemma

Given **A** with $|A| = n$, if can sort in $T(n)$ comparisons then can find π in $T(n)$ comparisons

Sorting As Permutations (cont'd)

Lemma

Given **A** with $|A| = n$, if can sort in $T(n)$ comparisons then can find π in $T(n)$ comparisons

Proof Sketch.

- **▸** "Tag" each element of A with index: **[**23, 14, 2, 5, 76**] → [(**23, 0**)**, **(**14, 1**)**, **(**2, 2**)**, **(**5, 3**)**, **(**76, 4**)]**
- **▸** Sort tagged A into tagged B with T**(**n**)** comparisons: **[(**2, 2**)**, **(**5, 3**)**, **(**14, 1**)**, **(**23, 0**)**, **(**76, 4**)]**
- **▶** Iterate through to get π : $\pi(2) = 0, \pi(3) = 1, \pi(1) = 2, \pi(0) = 3, \pi(4) = 4$

Sorting As Permutations (cont'd)

Lemma

Given **A** with $|A| = n$, if can sort in $T(n)$ comparisons then can find π in $T(n)$ comparisons

Proof Sketch.

- **▸** "Tag" each element of A with index: **[**23, 14, 2, 5, 76**] → [(**23, 0**)**, **(**14, 1**)**, **(**2, 2**)**, **(**5, 3**)**, **(**76, 4**)]**
- **▸** Sort tagged A into tagged B with T**(**n**)** comparisons: **[(**2, 2**)**, **(**5, 3**)**, **(**14, 1**)**, **(**23, 0**)**, **(**76, 4**)]**
- **▶** Iterate through to get π : $\pi(2) = 0, \pi(3) = 1, \pi(1) = 2, \pi(0) = 3, \pi(4) = 4$

Corollary

If need at least $T(n)$ comparisons to find π , need at least $T(n)$ comparisons to sort!

イロト イ押ト イヨト イヨト

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

G.

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

Arbitrary algorithm:

- **▸** Starts with some comparison (e.g., compares A**[**0**]** to A**[**1**]**)
- **▸** Rules out some possible permutations!
	- **▸** If A**[**0**] <** A**[**1**]** then π**(**0**) <** π**(**1**)**
	- \triangleright **If A[0]** > **A[1]** then $\pi(1) > \pi(0)$
- **▸** Depending on outcome, choose next comparison to make.
- **▸** Continue until only one possible permutation.

イ何 トマミ トマミト ニヨー

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

▸ Only comparisons cost us anything!

Arbitrary algorithm:

- **▸** Starts with some comparison (e.g., compares A**[**0**]** to A**[**1**]**)
- **▸** Rules out some possible permutations!
	- **▸** If A**[**0**] <** A**[**1**]** then π**(**0**) <** π**(**1**)**
	- **▸** If A**[**0**] >** A**[**1**]** then π**(**1**) >** π**(**0**)**
- **▸** Depending on outcome, choose next comparison to make.
- **▸** Continue until only one possible permutation.

Remind you of anything?

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

Model any algorithm as a binary decision tree

- **▸** Internal nodes: comparisons
- **▸** Leaves: permutations

G.

Model any algorithm as a binary decision tree

- **▸** Internal nodes: comparisons
- **▸** Leaves: permutations

Example: $n = 3$. Six possible permutations.

 $\mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A}$

4 0 8

Model any algorithm as a binary decision tree

- **▸** Internal nodes: comparisons
- **▸** Leaves: permutations

Example: $n = 3$. Six possible permutations.

$Max \#$ comparisons:

 \sim \rightarrow \Rightarrow

€⊡

Model any algorithm as a binary decision tree

- **▸** Internal nodes: comparisons
- **▸** Leaves: permutations

Example: $n = 3$. Six possible permutations.

Max $#$ comparisons: 3

 \sim \rightarrow \equiv \rightarrow

€⊡

Scale to general n . Consider arbitrary decision tree.

 $\mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A}$

 \leftarrow \leftarrow \leftarrow

不自下

€

Scale to general n . Consider arbitrary decision tree.

 $Max \#$ comparisons

 $\mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A}$

4 0 8 → 母 \sim

Scale to general n . Consider arbitrary decision tree.

 $Max \# comparisons = depth of tree$

 \sim

 \sim \rightarrow \Rightarrow \rightarrow

4 0 8 ∢母

Scale to general n . Consider arbitrary decision tree.

 $Max \# comparisons = depth of tree$

≥ log² **(**# leaves**)**

 \sim

 \sim \rightarrow \Rightarrow

4 0 8 ∢母

Scale to general \boldsymbol{n} . Consider arbitrary decision tree.

 $Max \# comparisons = depth of tree$

≥ log² **(**# leaves**)** $=$ $log_2(n!)$

 \sim

∍

 299

4 0 8 ∢母

Scale to general \boldsymbol{n} . Consider arbitrary decision tree.

 $Max \#$ comparisons = depth of tree

≥ log² **(**# leaves**)** $=$ $log_2(n!)$ **=** Θ**(**n log n**)**

∍

 299

4 0 8 \leftarrow \leftarrow

Sorting Lower Bound Summary

Theorem

Every sorting algorithm in the comparison model must make at least log**(**n!**) =** Θ**(**n log n**)** comparisons (in the worst case).

Proof Sketch.

- 1. Lower bound on finding permutation $\pi \implies$ lower bound on sorting
- 2. Any algorithm for finding π is a binary decision tree with **n!** leaves.
- 3. Any binary decision tree with $n!$ leaves has depth \geq $log(n!) = \Theta(n \log n)$
- \implies Every algorithm has worst case number of comparisons at least **Θ(n log n)**.

"Linear-Time" Sorting

Bypassing the Lower Bound

What if we're not in the comparison model?

▸ Can do more than just compare elements.

Main example: integers.

- **▸** What is the 3rd bit of A**[**0**]**?
- **▸** Is A**[**0**] ≪** k larger than A**[**1**] ≫** c?
- \blacktriangleright **ls A[0]** even?

Same ideas apply to letters, strings, etc.

G.

Suppose **A** consists of **n** integers, all in $\{0, 1, \ldots, k - 1\}$.

重

Suppose **A** consists of **n** integers, all in $\{0, 1, \ldots, k-1\}$.

Counting Sort:

- **▶** Maintain an array **B** of length **k** initialized to all **0**
- **▸** Scan through A and increment B**[**A**[**i**]]**.
- **▸** Scan through B, output i exactly B**[**i**]** times.

G.

Suppose **A** consists of **n** integers, all in $\{0, 1, \ldots, k-1\}$.

Counting Sort:

- **▶** Maintain an array **B** of length **k** initialized to all **0**
- **▸** Scan through A and increment B**[**A**[**i**]]**.
- **▸** Scan through B, output i exactly B**[**i**]** times.

Correctness: Obvious

B.

Suppose **A** consists of **n** integers, all in $\{0, 1, \ldots, k-1\}$.

Counting Sort:

- **►** Maintain an array **B** of length **k** initialized to all **0**
- **▸** Scan through A and increment B**[**A**[**i**]]**.
- **▸** Scan through B, output i exactly B**[**i**]** times.

Correctness: Obvious

Running time:

GB.

 299

Suppose **A** consists of **n** integers, all in $\{0, 1, \ldots, k-1\}$.

Counting Sort:

- **►** Maintain an array **B** of length **k** initialized to all **0**
- **▸** Scan through A and increment B**[**A**[**i**]]**.
- **▸** Scan through B, output i exactly B**[**i**]** times.

Correctness: Obvious

Running time: $O(n + k)$

GB 11 2990

Bucket Sort: Counting Sort++

Often want to sort objects based on keys:

- **▸** Each object has a key: integer in **{**0, 1, . . . , k **−** 1**}**
- **► A** consists of **n** objects

G.
Often want to sort objects based on keys:

- **▸** Each object has a key: integer in **{**0, 1, . . . , k **−** 1**}**
- **► A** consists of **n** objects

Bucket Sort:

- **▸** Same idea as counting sort, but B**[**i**]** is bucket of objects with key i
- **▸** Bucket is a linked list with pointers to beginning and end
- **▸** Insert at end of list, using end pointer.
- **▸** For output, go through each bucket in order.

イ何 ト イヨ ト イヨ トー

DE 1

Often want to sort objects based on keys:

- **▸** Each object has a key: integer in **{**0, 1, . . . , k **−** 1**}**
- **► A** consists of **n** objects

Bucket Sort:

- **▸** Same idea as counting sort, but B**[**i**]** is bucket of objects with key i
- **▸** Bucket is a linked list with pointers to beginning and end
- **▸** Insert at end of list, using end pointer.
- **▸** For output, go through each bucket in order.

Running time:

イ何 ト イヨ ト イヨ トー

GB 11

Often want to sort objects based on keys:

- **▸** Each object has a key: integer in **{**0, 1, . . . , k **−** 1**}**
- **► A** consists of **n** objects

Bucket Sort:

- **▸** Same idea as counting sort, but B**[**i**]** is bucket of objects with key i
- **▸** Bucket is a linked list with pointers to beginning and end
- **▸** Insert at end of list, using end pointer.
- **▸** For output, go through each bucket in order.

Running time: $O(n + k)$

イ何 ト イヨ ト イヨ トー

GB 11

Often want to sort objects based on keys:

- **▸** Each object has a key: integer in **{**0, 1, . . . , k **−** 1**}**
- **► A** consists of **n** objects

Bucket Sort:

- **▸** Same idea as counting sort, but B**[**i**]** is bucket of objects with key i
- **▸** Bucket is a linked list with pointers to beginning and end
- **▸** Insert at end of list, using end pointer.
- **▸** For output, go through each bucket in order.

Running time: $O(n + k)$

Stable: if two objects have same key, order between them after sorting is same as before.

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

What if \bm{k} is much larger than \bm{n} , e.g., $\bm{k} = \bm{\Theta}(\bm{n^2})$?

重

What if \bm{k} is much larger than \bm{n} , e.g., $\bm{k} = \bm{\Theta}(\bm{n^2})$? Radix sort: O**(**n**)** time**[∗]** for this case

What if \bm{k} is much larger than \bm{n} , e.g., $\bm{k} = \bm{\Theta}(\bm{n^2})$? Radix sort: O**(**n**)** time**[∗]** for this case

Setup:

- **▸** Numbers represented base 10 for historical reasons (all works fine in binary)
- **•** Assume all numbers have exactly **d** digits (for simplicity)

What if \bm{k} is much larger than \bm{n} , e.g., $\bm{k} = \bm{\Theta}(\bm{n^2})$? Radix sort: O**(**n**)** time**[∗]** for this case

Setup:

- **▸** Numbers represented base 10 for historical reasons (all works fine in binary)
- **►** Assume all numbers have exactly **d** digits (for simplicity)

If you were sorting cards, with a number on each card, what might you do?

イ押 トイヨ トイヨ トー

GB.

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

4 0 8

∍

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

Works, but clunky

 \sim \rightarrow \equiv \rightarrow

€⊡

∍

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

 $\mathcal{A} \cong \mathcal{B} \times \mathcal{A} \cong \mathcal{B}$

 \overline{AB}

4 0 8

∍

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

For iteration \boldsymbol{i} , use bucket sort where key is \boldsymbol{i}' th digit and object is number.

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

For iteration \bm{i} , use bucket sort where key is \bm{i}' th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is stable.

Proof.

Claim: After *i*'th iteration, correctly sorted by last *i* digits (interpreted as $\#$ in $[0, 10^{i} - 1]$).

 290

4 0 8

Proof.

Claim: After *i*'th iteration, correctly sorted by last *i* digits (interpreted as $\#$ in $[0, 10^{i} - 1]$). Induction on \bm{i} .

4 0 F

 \rightarrow \rightarrow \equiv \rightarrow

 290

Proof.

Claim: After *i*'th iteration, correctly sorted by last *i* digits (interpreted as $\#$ in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

 Ω

Proof.

Claim: After *i*'th iteration, correctly sorted by last *i* digits (interpreted as $\#$ in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

Induction:

- **▸** Suppose correct for i
- **▸** After i **+** 1 sort:

 Ω

Proof.

Claim: After *i*'th iteration, correctly sorted by last *i* digits (interpreted as $\#$ in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

Induction:

- **▸** Suppose correct for i
- \triangleright After $i + 1$ sort:
	- **•** If two numbers have different $\mathbf{i} + \mathbf{1}$ digits, now correct.
	- **•** If two number have same $i + 1$ digit, were correct and still correct by stability.

Recall have n numbers, all numbers have d digits.

Recall have n numbers, all numbers have d digits.

 $#$ bucket sorts:

Recall have n numbers, all numbers have d digits.

 $#$ bucket sorts: d

Recall have n numbers, all numbers have d digits.

 $#$ bucket sorts: d Time per bucket sort:

Recall have n numbers, all numbers have d digits.

 $#$ bucket sorts: d Time per bucket sort: $O(n+k) = O(n+10) = O(n)$.

 $A \equiv \mathbf{1} \times \mathbf{1} \times \mathbf{1} \times \mathbf{1}$

4 0 8

Recall have n numbers, all numbers have d digits.

 $#$ bucket sorts: **d** Time per bucket sort: $O(n+k) = O(n+10) = O(n)$. Total time: O**(**dn**)**

 \rightarrow 3 \rightarrow 3 \rightarrow

← ロ ▶ → イ 同 ▶

Recall have n numbers, all numbers have d digits.

```
# bucket sorts: d
Time per bucket sort: O(n+k) = O(n+10) = O(n).
Total time: O(dn)
```
Is this good? Bad? In between? If all numbers distinct, $d \ge \log_{10} n \implies$ total time $O(n \log n)$

医毛囊 医毛囊 医心包

D.

Recall have n numbers, all numbers have d digits.

```
# bucket sorts: d
Time per bucket sort: O(n+k) = O(n+10) = O(n).
Total time: O(dn)
```

```
Is this good? Bad? In between?
If all numbers distinct, d \ge \log_{10} n \implies total time O(n \log n)
```

```
Bad: not O(n) time!
Good: "Size of input" is N = nd, so linear in size of input!
```
化重新化重新

Recall have n numbers, all numbers have d digits.

```
# bucket sorts: d
Time per bucket sort: O(n+k) = O(n+10) = O(n).
Total time: O(dn)
```

```
Is this good? Bad? In between?
If all numbers distinct, d \ge \log_{10} n \implies total time O(n \log n)
```

```
Bad: not O(n) time!
Good: "Size of input" is N = nd, so linear in size of input!
```
Improve to $O(n)$?

- K 로 K X 로 K 도 로 X 9 Q Q Q

Change to go b digits at a time instead of just 1.

- **►** Kind of cheating: look at *b* digits in constant time.
- **▶** Necessary if we want time better than *nd*

E.

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▸** Necessary if we want time better than nd

 $#$ bucket sorts:

E.

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▸** Necessary if we want time better than nd

bucket sorts: d**/**b

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▸** Necessary if we want time better than nd

bucket sorts: d**/**b Time per bucket sort:

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▶** Necessary if we want time better than *nd*

bucket sorts: d**/**b Time per bucket sort: $O(n+k) = O(n+10^b)$

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▶** Necessary if we want time better than *nd*

bucket sorts: d**/**b Time per bucket sort: $O(n+k) = O(n+10^b)$ Total time: $O\left(\frac{d}{h}\right)$ $\frac{d}{b}(n+10^b)\right)$

Change to go **digits at a time instead of just 1.**

- **►** Kind of cheating: look at *b* digits in constant time.
- **▶** Necessary if we want time better than *nd*

bucket sorts: d**/**b Time per bucket sort: $O(n+k) = O(n+10^b)$ Total time: $O\left(\frac{d}{h}\right)$ $\frac{d}{b}(n+10^b)\right)$

Set $b = \log_{10} n$. If $d = O(\log n)$, then time

$$
O\left(\frac{d}{\log_{10} n}(n+n)\right) = O(n)
$$
Fast Radix Sort

Change to go b digits at a time instead of just 1.

- **►** Kind of cheating: look at *b* digits in constant time.
- **▶** Necessary if we want time better than *nd*

bucket sorts: d**/**b Time per bucket sort: $O(n+k) = O(n+10^b)$ Total time: $O\left(\frac{d}{h}\right)$ $\frac{d}{b}(n+10^b)\right)$

Set $b = \log_{10} n$. If $d = O(\log n)$, then time

$$
O\left(\frac{d}{\log_{10} n}(n+n)\right) = O(n)
$$

Example: sorting integers between $\bm{0}$ and \bm{n}^{10} . Then \bm{d} should be about $\log_{10}\bm{n}^{10}$ = $10\log_{10}\bm{n}$, as required. $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$ \equiv 990