
Lecture 6: Balanced Search Trees

Michael Dinitz

September 12, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 1 / 25

Announcements

� HW2 due now, HW3 released

� Regrade policy: 72 hours from when grades released� Don’t abuse this!� If too many of your regrade requests do not result in positive changes, will ban you from
regrade requests� Grading can go down!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 2 / 25

Introduction

Today, and next few weeks: data structures.

� Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:

� insert(key,object): insert the (key, object) pair.

� lookup(key): return the associated object

� delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 3 / 25

Introduction

Today, and next few weeks: data structures.

� Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:

� insert(key,object): insert the (key, object) pair.

� lookup(key): return the associated object

� delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 3 / 25

Introduction

Today, and next few weeks: data structures.

� Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:

� insert(key,object): insert the (key, object) pair.

� lookup(key): return the associated object

� delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 3 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup:

O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)

� Insert: ⌦(n)
Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert:

⌦(n)
Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert:

O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)

� Lookup: ⌦(n)
Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup:

⌦(n)
Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.

Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

� Lookup: O(logn)
� Insert: ⌦(n)

Approach 2: Unsorted (linked) list

� Insert: O(1)
� Lookup: ⌦(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 4 / 25

Binary Search Tree Review

Binary search tree:

� All nodes have at most 2 children

� Each node stores (key, object) pair

� All descendants to left have smaller keys

� All descendants to the right have larger keys

Lookup: follow path from root!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 5 / 25

0

Binary Search Tree Review

Binary search tree:

� All nodes have at most 2 children

� Each node stores (key, object) pair

� All descendants to left have smaller keys

� All descendants to the right have larger keys

Lookup: follow path from root!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 5 / 25

Dictionary Operations in Simple Binary Search Tree

insert(x):� If tree empty, put x at root� Else if x < root.key recursively insert into left child� Else (if x > root.key) recursively insert into right child

Example: H O P K I N S

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 6 / 25

Dictionary Operations in Simple Binary Search Tree

insert(x):� If tree empty, put x at root� Else if x < root.key recursively insert into left child� Else (if x > root.key) recursively insert into right child

Example: H O P K I N S

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 6 / 25

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d , then ⇥(d)
� If very unbalanced d could be ⌦(n)!

Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time:

if depth d , then ⇥(d)
� If very unbalanced d could be ⌦(n)!

Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d , then ⇥(d)

� If very unbalanced d could be ⌦(n)!
Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d , then ⇥(d)
� If very unbalanced d could be ⌦(n)!

Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

My

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d , then ⇥(d)
� If very unbalanced d could be ⌦(n)!

Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

did
do

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d , then ⇥(d)
� If very unbalanced d could be ⌦(n)!

Want to make tree balanced.

Rest of today:

� B-trees: perfect balance, not binary

� Red-black trees: approximate balance, binary

� Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 7 / 25

B-Trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 8 / 25

B-tree Definition

Parameter t ≥ 2.

Definition (B-tree with parameter t)
1. Each node has between t − 1 and 2t − 1 keys in it (except the root has between 1 and

2t − 1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1,a2, . . . ,ak] and the children are [v1,v2, . . . ,vk+1], then the
tree rooted at vi contains only keys that are at least ai−1 and at most ai (except the the
edge cases: the tree rooted at v1 has keys less than a1, and the tree rooted at vk+1 has
keys at least ak).

3. All leaves are at the same depth.

When t = 2 known as a 2-3-4 tree, since # children either 2, 3, or 4

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 9 / 25

B-tree Definition

Parameter t ≥ 2.

Definition (B-tree with parameter t)
1. Each node has between t − 1 and 2t − 1 keys in it (except the root has between 1 and

2t − 1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1,a2, . . . ,ak] and the children are [v1,v2, . . . ,vk+1], then the
tree rooted at vi contains only keys that are at least ai−1 and at most ai (except the the
edge cases: the tree rooted at v1 has keys less than a1, and the tree rooted at vk+1 has
keys at least ak).

3. All leaves are at the same depth.

When t = 2 known as a 2-3-4 tree, since # children either 2, 3, or 4

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 9 / 25

B-tree Definition

Parameter t ≥ 2.

Definition (B-tree with parameter t)
1. Each node has between t − 1 and 2t − 1 keys in it (except the root has between 1 and

2t − 1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1,a2, . . . ,ak] and the children are [v1,v2, . . . ,vk+1], then the
tree rooted at vi contains only keys that are at least ai−1 and at most ai (except the the
edge cases: the tree rooted at v1 has keys less than a1, and the tree rooted at vk+1 has
keys at least ak).

3. All leaves are at the same depth.

When t = 2 known as a 2-3-4 tree, since # children either 2, 3, or 4

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 9 / 25

B-tree: Example

t = 3:

� Root has between 1 and 5 keys, non-roots have between 2 and 5 keys

� Non-leaves have between 3 and 6 children (root can have fewer).

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 10 / 25

Lookups

Binary search in array at root. Finished if find item, else get pointer to appropriate child,
recurse.

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 11 / 25

Insert(x)

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Obvious approach: do a lookup, put x in leaf where it should be.� Example: insert E

Problem: What if leaf is full (already has 2t − 1 keys)?

Split:� Only used on full nodes (nodes with 2t − 1 keys) whose parents are not full.� Pull median of its keys up to its parent� Split remaining 2t − 2 keys into two nodes of t − 1 keys each. Reconnect appropriately.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 12 / 25

E

Insert(x)

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Obvious approach: do a lookup, put x in leaf where it should be.� Example: insert E

Problem: What if leaf is full (already has 2t − 1 keys)?

Split:� Only used on full nodes (nodes with 2t − 1 keys) whose parents are not full.� Pull median of its keys up to its parent� Split remaining 2t − 2 keys into two nodes of t − 1 keys each. Reconnect appropriately.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 12 / 25

Insert(x)

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Obvious approach: do a lookup, put x in leaf where it should be.� Example: insert E

Problem: What if leaf is full (already has 2t − 1 keys)?

Split:� Only used on full nodes (nodes with 2t − 1 keys) whose parents are not full.� Pull median of its keys up to its parent� Split remaining 2t − 2 keys into two nodes of t − 1 keys each. Reconnect appropriately.
Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 12 / 25

C

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E ,F into example.

Note: since split on the way down, when a node is split, its parent is not full!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 13 / 25

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Insert E ,F into example.

Note: since split on the way down, when a node is split, its parent is not full!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 13 / 25

Ed

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Insert E ,F into example.

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Note: since split on the way down, when a node is split, its parent is not full!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 13 / 25

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t � 2 (think of t = 2 or t = 3):

• Each node has between t � 1 and 2t � 1 keys in it (except the root has between 1 and 2t � 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i�1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K L N O T Y Z

H M R

A B C D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t�1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t� 2 keys into two nodes of t� 1 keys each (one with the elements less than the median and

Insert E ,F into example.

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Note: since split on the way down, when a node is split, its parent is not full!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 13 / 25

Example continued

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert S,U,V :

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 14 / 25

Example continued

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert S,U,V :

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 14 / 25

S U

Example continued

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert S,U,V :

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 14 / 25

Example continued

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert S,U,V :

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 14 / 25

Example continued

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert S,U,V :

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Insert P:

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C H M R

A B D E F K L N O T Y Z

Question: We know that performing a split maintains the requirement of at least t � 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C H M R U

A B D E F K L N O S T V Y Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C H R U

A B D E F K L S T V Y ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth�
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 14 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth):

Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓

First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split:

only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split:

Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges):

Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x .

Third property (all leaves at same depth): Tree grows up. ✓
First property (all non-leaves other than root have between t − 1 and 2t − 1 keys):

� No split: only leaf changes, was not full (or would have split)

� Split: Parent was not full. New nodes have exactly t − 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. ✓

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 15 / 25

B-tree running time

Suppose n keys, depth d

≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)

Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through

�⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf

� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf

� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf:

O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)

� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time:

O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split

�⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree running time

Suppose n keys, depth d ≤ O(logt n)
Lookup:

� Binary search on array in each node we pass through �⇒ O(log t) time per node.

� Total time O(d × log t) = O(logt n × log t) = O(logn
log t × log t) = O(logn)

Insert:

� Same as insert, but need to split on the way down & insert into leaf� Total: lookup time + splitting time + time to insert into leaf� Insert into leaf: O(t)� Splitting time: O(t) per split �⇒ O(td) = O(t logt n) total

� O(t logt n) = O(t
log t logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 16 / 25

B-tree notes

Used a lot in databases

� Large t: shallow trees. Fits well with memory hierarchy

t = 2:

� 2-3-4 tree

� Can be implemented as binary tree using red-black trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 17 / 25

B-tree notes

Used a lot in databases

� Large t: shallow trees. Fits well with memory hierarchy

t = 2:

� 2-3-4 tree

� Can be implemented as binary tree using red-black trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 17 / 25

Red-Black Trees

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 18 / 25

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

� Classical and super important data structure question

� Many solutions!

Most famous: red-black trees

� Default in Linux kernel, used to optimize Java HashMap, . . .

� Today: Quick overview, connection to 2-3-4 trees.

� Not traditional or practical point of view on red-black trees. See book!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 19 / 25

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

� Classical and super important data structure question

� Many solutions!

Most famous: red-black trees

� Default in Linux kernel, used to optimize Java HashMap, . . .

� Today: Quick overview, connection to 2-3-4 trees.

� Not traditional or practical point of view on red-black trees. See book!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 19 / 25

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

� Classical and super important data structure question

� Many solutions!

Most famous: red-black trees

� Default in Linux kernel, used to optimize Java HashMap, . . .

� Today: Quick overview, connection to 2-3-4 trees.

� Not traditional or practical point of view on red-black trees. See book!

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 19 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!

� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4

� Degree 2: good!� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!

� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

5 4 5
9

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

� Degree 3:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?� No: can’t have perfect balance!� Just need depth O(logn)
Nodes in 2-3-4 tree have degree 2, 3, or 4� Degree 2: good!� Degree 4:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

� Degree 3:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 20 / 25

b a
als

a 5

Important Properties

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

1. Never have two red edges in a row.� Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)� Each black edge is a 2-3-4 tree edge� All leaves in 2-3-4 tree at same distance from root

�⇒ path from root to deepest leaf ≤ 2 × path to shallowest leaf�⇒ depth ≤ O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 21 / 25

Important Properties

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

1. Never have two red edges in a row.� Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)� Each black edge is a 2-3-4 tree edge� All leaves in 2-3-4 tree at same distance from root

�⇒ path from root to deepest leaf ≤ 2 × path to shallowest leaf�⇒ depth ≤ O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 21 / 25

Important Properties

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

1. Never have two red edges in a row.� Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)� Each black edge is a 2-3-4 tree edge� All leaves in 2-3-4 tree at same distance from root

�⇒ path from root to deepest leaf ≤ 2 × path to shallowest leaf�⇒ depth ≤ O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 21 / 25

Important Properties

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

1. Never have two red edges in a row.� Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)� Each black edge is a 2-3-4 tree edge� All leaves in 2-3-4 tree at same distance from root

�⇒ path from root to deepest leaf ≤ 2 × path to shallowest leaf

�⇒ depth ≤ O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 21 / 25

Important Properties

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

1. Never have two red edges in a row.� Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)� Each black edge is a 2-3-4 tree edge� All leaves in 2-3-4 tree at same distance from root

�⇒ path from root to deepest leaf ≤ 2 × path to shallowest leaf�⇒ depth ≤ O(logn)
Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 21 / 25

Insert

Want to insert while preserving two properties.

2-3-4 trees: split full nodes on way down.

Easy cases:

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

as ab a c

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Harder cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

are ie c e e

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Harder cases:

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 22 / 25

Tree Rotations

Used in many di↵erent tree constructions.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 23 / 25

Tree Rotations

Used in many di↵erent tree constructions.

Tree Rotations

Used in many di↵erent tree constructions.

u

p

C

A B

u

p

C

A

B

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 22 / 24Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 23 / 25

Using Rotations

Can use rotations to “fix” hard cases. Example:

17

Red-Black Tree: Splitting Nodes

right rotate R !

left rotate E !

change colors

inserting G

18

Red-Black Tree: Insertion

E

A

P

E

X

M

L

19

Red-Black Tree: Balance

Property A. Every path from root to leaf has same number of black links.

Property B. At most one red link in-a-row.

Property C. Height of tree is less than 2 lg N + 2.

20

Symbol Table: Implementations Cost Summary

Note. Comparison within nodes are accounted for.

* assumes hash map is random for all keys
† N is the number of nodes ever inserted
‡ probabilistic guarantee
§ amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 24 / 25

End

A few more complications to deal with – see lecture notes, textbook.

Main points:

� Red-Black trees can be thought of as a binary implementation of 2-3-4 trees

� Approximately balanced, so O(logn) lookup time

� Insert time (basically) same as 2-3-4 tree, so also O(logn).
� See book for direct approach (not through 2-3-4 trees).

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 25 / 25

End

A few more complications to deal with – see lecture notes, textbook.

Main points:

� Red-Black trees can be thought of as a binary implementation of 2-3-4 trees

� Approximately balanced, so O(logn) lookup time

� Insert time (basically) same as 2-3-4 tree, so also O(logn).
� See book for direct approach (not through 2-3-4 trees).

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 25 / 25

