
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Balanced Search Trees Date: 9/12/24

6.1 Introduction

For the next few lectures we will be looking at several important data structures. A data structure
is a method for storing data so that operations you care about can be performed quickly. Data
structures are typically used as part of some larger algorithm or system, and good data structures
are often crucial when especially fast performance is needed. Today we will be focusing in particular
on what are called dictionary data structures, that support insert and lookup operations (and often
delete as well). Specifically,

Definition 6.1.1 A dictionary data structure is a data structure supporting the following opera-
tions:

• insert(key,object): insert the (key, object) pair. For instance, this could be a word and its
definition, a name and phone number, etc. The key is what will be used to access the object.

• lookup(key): return the associated object

• delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

One option is we could use a sorted array. Then, a lookup takes O(log n) time using binary search.
However, an insert may take Ω(n) time in the worst case because we have to shift everything to
the right in order to make room for the new key. Another option might be an unsorted list. In that
case, inserting can be done in O(1) time, but a lookup may take Ω(n) time. Our goal is going to
be to construct data structures which let us perform all operations in O(log n) time.

A binary search tree is a binary tree in which each node stores a (key, object) pair such that all
descendants to the left have smaller keys and all descendants to the right have larger keys (let’s
not worry about the case of multiple equal keys). To do a lookup operation you simply walk down
from the root, going left or right depending on whether the query is smaller or larger than the key
in the current node, until you get to the correct key or walk off the tree. We will also talk about
non-binary search trees that potentially have more than one key in each node, and nodes may have
more than two children.

For the rest of this discussion, we will ignore the “object” part of things. We will just worry about
the keys since that is all that matters as far as understanding the data structures is concerned.

6.2 Simple Binary Search Trees

The simplest way to maintain a binary search tree is to implement the insert operations as follows:

1



insert(x): If the tree is empty then put x in the root. Otherwise, compare it to the root: if x is
smaller then recursively insert on the left; otherwise recursively insert on the right.

Equivalently: walk down the tree as if doing a lookup, and then insert x into a new leaf at the end.

Example: build a tree by inserting the sequence: H O P K I N S.

On the positive side, this is very easy to implement (although deletes are a bit of a pain – think
of how you would implement them). However, the worst-case performance is very bad. If the tree
has depth d, then an insert or a lookup could take Ω(d) time. So if the tree is very unbalanced,
operations could take Ω(n) time each! This is actually similar to what happens with quicksort –
if the input is already sorted, then each recursive call only decreases the input size (quicksort) or
depth of tree (BSTs) by one.

Main idea: The problem with the basic binary search tree was that we were not maintaining
balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend too
much time rearranging things. So, we want to be balanced but also give ourselves some slack. It’s
a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot to be
“near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves slack
by allowing some nodes to have more children than others.

6.3 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t ≥ 2 (think of t = 2 or t = 3) the following
three properties hold.

1. Each node has between t− 1 and 2t− 1 keys in it (except the root has between 1 and 2t− 1
keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. If v is a
node with keys [a1, a2, . . . , ak] and the children are [v1, v2, . . . , vk+1], then the tree rooted at
vi contains only keys that are at least ai−1 and at most ai (except the the edge cases: the
tree rooted at v1 has keys less than a1, and the tree rooted at vk+1 has keys at least ak).

E.g., if the keys are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for
keys between a1 and a2, and so on, until the rightmost child has keys greater than a10.

3. All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. The special case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

As an example, here is a tree for t = 3 (so, non-leaves have between 3 and 6 children (though the
root can have fewer) and the maximum size of any node is 5).

2



9.4. B-TREES AND 2-3-4 TREES 45

An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

9.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t ≥ 2 (think of t = 2 or t = 3):

• Each node has between t − 1 and 2t − 1 keys in it (except the root has between 1 and 2t − 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i−1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K  L N  O T  Y  Z

H   M   R

A  B  C  D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t−1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t− 2 keys into two nodes of t− 1 keys each (one with the elements less than the median and

Now we have to define how to do inserts and lookups.

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case you
recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a
full node (a node with the maximum 2t− 1 keys in it), perform a split operation on it immediately
(described below) before continuing. When you’re at a leaf node, insert the new element into the
array at that node.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t − 2 keys into two nodes of t − 1 keys each (one with the elements less than the median and
one with the elements greater than the median). Then connect these nodes to their parent in the
appropriate way (one as the child to the left of the median and one as the child to its right). If the
node being split is the root, then create a fresh new root node to put the median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C  H  M  R

A  B     D E F K  L N  O T  Y  Z

Question: We know that performing a split maintains the requirement of at least t − 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C  H  M  R  U

A  B     D E F K  L N  O S  T    V  Y  Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C  H        R  U

A  B     D E F K  L S  T    V  Y  ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth×
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Sanity check: We know that performing a split maintains the requirement of at least t− 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full? No, since if the parent were already full then we would have split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

3



9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C  H  M  R

A  B     D E F K  L N  O T  Y  Z

Question: We know that performing a split maintains the requirement of at least t − 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C  H  M  R  U

A  B     D E F K  L N  O S  T    V  Y  Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C  H        R  U

A  B     D E F K  L S  T    V  Y  ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth×
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

9.4. B-TREES AND 2-3-4 TREES 46

one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C  H  M  R

A  B     D E F K  L N  O T  Y  Z

Question: We know that performing a split maintains the requirement of at least t − 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, “V”:

C  H  M  R  U

A  B     D E F K  L N  O S  T    V  Y  Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C  H        R  U

A  B     D E F K  L S  T    V  Y  ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth×
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:

Let’s prove (somewhat informally) the correctness of our insert procedure. In particular, let’s prove
that all nodes store the right number of keys (between t− 1 and 2t− 1 for a non-root, and at most
2t− 1 for the root), that all elements in the subtree between two adjacent keys are indeed at least
the smaller and at most the larger, and that all leaves are the same depth.

Theorem 6.3.1 Our insert algorithm maintains all three properties of a B-tree.

Proof: We will prove this by induction. Note that if we insert into an empty B-tree we get simply
one node with one element in it. All three properties of a B-tree are indeed true.

Now suppose that we have a B-tree which satisfies all three properties, and insert an element x.
We claim that the resulting tree still satisfied all three properties.

The third property is obvious since the tree grows “up”: let h be the height of the tree before the
insert, which by induction is the depth of all the leaves. If our insert does not split the root then
the distance between the root and all leaves is unchanged (and so all of them are still h), while if
we do split the root then all leaves are at distance h+ 1 from the new root.

For the first property, note that whenever we do a split operation, the parent gains one new key
while each child has exactly t− 1 keys in it. Since when we do an insert we split any node on the
path which has 2t− 1 keys in it, whenever we do a split operation on a node, its parent must have
strictly less than 2t− 1 keys (or else the parent would have already been split). Thus none of our
split operations violate the degree bounds. And when we do finally insert the new key, the node
we insert into must have strictly less than 2t− 1 keys before the insert (or else we would split it).
Hence when we do an insert we never violate any of the degree upper bounds. Similarly, we never

4



violate a degree lower bound since we never create a node with less than t− 1 keys other than the
root (which is allowed to have fewer keys).

So it remains only to prove that for every node, the tree rooted at the ith child of the node contains
keys which are between the (i− 1) and i’th key in the node. Whenever we do a split operation we
preserve this property, so it is preserved as we move down the tree on our insert, and in the end
the new key that we insert is placed in a leaf node so that this property continues to hold. Hence
this property (and this all three properties) continues to hold after inserting a new key.

So, we have maintained our desired properties. What about running time? Suppose that the depth
is d. To perform a lookup, we perform binary search in each node we pass through, so the total
time for a lookup is O(d × log t). What is the depth of the tree? Since at each level we have a
branching factor of at least t (except possibly at the root), the depth is O(logt n). Combining these
together, we see that the t cancels out in the expression for lookup time:

Time for lookup = O(logt n× log t) = O((log n)/(log t)× log t) = O(log n)

Inserts are similar to lookups except for two issues. First, we may need to split nodes on the way
down, and secondly we need to insert the element into the leaf. So, we have:

Time for insert = lookup-time + splitting-time + time-to-insert-into-leaf.

The time to insert into a leaf is O(t). The splitting time is O(t) per split, which could happen at
each step on the way down, for a total of O(t log n). So, if t is a constant, then we still get total
time O(log n). Note that this motivates us to make t small, which is one reason that 2-3-4 trees
get their own name.

More facts about B-trees:

• B-trees are used a lot in databases applications because they fit in nicely with the memory
hierarchy when you use a large value of t. For instance, if you have 1 billion items and use
t = 1, 000, then you can probably keep the top two levels in fast memory and only make one
disk access at the bottom level. The savings in disk accesses more than makes up for the
extra O(t) cost for the insert. From a student four years ago: “I was personally asked in
interviews why B-trees are well suited for extremely large data sets.”

• If you use t = 2, you have what is known as a 2-3-4 tree. What is special about 2-3-4 trees
is that they can be implemented efficiently as binary trees using an idea called “red-black
trees”, which is what we’ll discuss next.

6.4 Red-Black Trees

B-trees are great, but it’s generally easier to use binary trees. Lookups are simpler, people find
them easier to understand, and for general-purpose (non-database) applications, they tend to be a
bit faster and a bit more flexible. There have been a whole bunch of balanced binary search trees
developed – you may have seen AVL trees or red-black trees already when you took Data Structures

5



(601.226). One of the most popular and widely used are red-black trees – they’re the default in the
linux kernel, are used to optimize Java HashMaps, and are generally the balanced search tree of
choice in practice. I don’t have time to go over them in full detail, but you should read the book.
What I’ll try to explain here is how we can view them as essentially binary versions of 2-3-4 trees.

One quick note: unlike B-trees, for red-black trees (and binary trees in general) we’ll use the
convention that all missing pointers actually point to NULL. In other words, keys are only stored
at internal nodes: all leafs are just NULL. This will make it a bit easier to analyze

So let’s start from a 2-3-4 tree. How can we turn it into a binary tree and still have all of the
nice properties of a 2-3-4 tree? Unfortunately, we can’t – we’re not going to be able to get exact
height-balance on any binary tree. But recall that we don’t need exact balance in order to have
efficient lookups; we just need the depth to be O(log n). So let’s be a bit flexible in the balance
requirement.

Maybe we get lucky, and all the nodes of our 2-3-4 are actually degree-2 (they have one key stored
at them). Then we don’t need to do anything. But what if we have some nodes with 2 or 3 keys
stored at them? Let’s start with the case of 3 keys stored, since that’s simpler: let’s just transform
the single degree-4 node into three degree-2 nodes!

Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

16

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation

So now we have two kinds of edges: some which correspond to the original edges in the 2-3-4 tree
(we all these black edges), and some which are “internal” in the larger nodes in the 2-3-4 tree (we
call these red edges). When we represent a node with 2 keys stored (degree 3), we actually have
two choices:

Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

16

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation

So suppose that we start with a 2-3-4 tree, and turn it into a binary tree using the above corre-
spondences. What important properties do we have that show this is a good binary tree?

1. In every path from the root to any other node, every red edge is followed by a black edge
(i.e., two red edges never appear in a row).

2. For each node, all paths to its descendent leaves have the same number of black edges. When
this node is the root r, this value is called the black-depth.

Note that these are both simple consequences of the properties of 2-3-4 trees we’ve talked about
and the correspondences we chose. Together, they imply that the path from the root to the farthest
leaf is no more than twice as long as the path from the root to the nearest leaf. This in turn implies

6



that the depth of the tree is only O(log n), so lookups will be efficient (see Lemma 13.1 in the
book).

So we just need to figure out a way of inserting which preserves this correspondence (or more
importantly, preserves the two important properties). This turns out to be a little complicated,
and is the main reason that red-black trees can seem a bit mysterious. Note that I’m going to do
this slightly differently than how it’s done in the book, in order to make the correspondence to 2-3-4
trees a bit clearer. I strongly suggest you also read the book on this. Informally, we’re going to
split full nodes on the way down (like in B-trees), while the book (and most real implementations)
first insert and then “repair” by moving up the tree.

So suppose we’re trying to insert. The basic idea is to do a normal binary tree insert, where the
new link is red (since it’s like inserting into a node at the bottom of the 2-3-4 tree). If this were
a 2-3-4 tree, if we saw a full node on our way down when inserting, we would split it. What does
that look like in red-black trees? Some cases are easy: we can just switch colors (bold is red).

Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

16

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation

But other cases are harder – switching colors will violate one of the red-black requirements:

Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

16

Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation

In order to handle these cases, we need to use the idea of rotations. Tree rotations are a way of
changing binary search tree while still preserving the search tree property. They’re useful all over
the place, and are used in search tree data structures beyond just red-black trees. The basic idea
is simple, as the following picture shows.

7



Tree Rotations

Used in many di↵erent tree constructions.

u

p

C

A B

u

p

C

A

B

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 22 / 24

It turns out we can solve the annoying cases of red-black trees by using either one (the first case)
or two (the second case) rotations. Let’s see this through an example (proofs are in the book –
read them!)

17

Red-Black Tree:  Splitting Nodes

right rotate R   !

left rotate E   !

change colors

inserting G

18

Red-Black Tree:  Insertion

E

A

P

E

X

M

L

19

Red-Black Tree:  Balance

Property A.  Every path from root to leaf has same number of black links.

Property B.  At most one red link in-a-row.

Property C.  Height of tree is less than 2 lg N + 2.

20

Symbol Table:  Implementations Cost Summary

Note.  Comparison within nodes are accounted for.

*  assumes hash map is random for all keys
†  N is the number of nodes ever inserted
‡  probabilistic guarantee
§  amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

We also need to handle some other complications – even if we don’t see any full nodes on our way
down, inserting the new node might mess up the correspondence to 2-3-4 trees and the red-black
properties. These can also be handled with appropriate tree rotations. For example, suppose we
insert F (E in these notes since I’ve copied them):

17

Red-Black Tree:  Splitting Nodes

right rotate R   !

left rotate E   !

change colors

inserting G

18

Red-Black Tree:  Insertion

E

A

P

E

X

M

L

19

Red-Black Tree:  Balance

Property A.  Every path from root to leaf has same number of black links.

Property B.  At most one red link in-a-row.

Property C.  Height of tree is less than 2 lg N + 2.

20

Symbol Table:  Implementations Cost Summary

Note.  Comparison within nodes are accounted for.

*  assumes hash map is random for all keys
†  N is the number of nodes ever inserted
‡  probabilistic guarantee
§  amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

There are a few other complications, but this should illustrate the basic idea. A red-black tree is
a particular binary tree representation of a 2-3-4 tree, and by carefully designing our insert and

8



delete algorithm to respect this representation, we can get a binary search tree with O(log n) for
lookups, inserts, and deletes. As mentioned, the book does this slightly differently, which obscures
the relationship to 2-3-4 trees (although it’s still true) but makes red-black trees themselves quite
a bit simpler. Please make sure you understand what’s going on in the book.

9


	Introduction
	Simple Binary Search Trees
	B-trees and 2-3-4 trees
	Red-Black Trees

