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Announcements

» HW2 due now, HW3 released

» Regrade policy: 72 hours from when grades released

» Don't abuse this!

> If too many of your regrade requests do not result in positive changes, will ban you from
regrade requests

» Grading can go down!
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Introduction

Today, and next few weeks: data structures.

» Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis
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Today and later: data structures for dictionaries
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Introduction

Today, and next few weeks: data structures.

» Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:
> insert(key,object): insert the (key, object) pair.
> lookup(key): return the associated object

> delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.
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Obvious Approaches

Reminder: all running times for worst case
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Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)

> Insert:
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Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)
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Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
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Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
» Insert: O(1)

Michael Dinitz Lecture 6: Balanced Search Trees

September 12, 2024

4/25



Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
» Insert: O(1)
» Lookup:

Michael Dinitz Lecture 6: Balanced Search Trees

September 12, 2024

4/25



Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
» Insert: O(1)
» Lookup: Q(n)

Michael Dinitz Lecture 6: Balanced Search Trees

September 12, 2024

4/25



Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
» Insert: O(1)
» Lookup: Q(n)

Goal: O(log n) for both.
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Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
> Lookup: O(log n)
» Insert: Q(n)

Approach 2: Unsorted (linked) list
» Insert: O(1)
» Lookup: Q(n)

Goal: O(log n) for both.
Approach today: search trees
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Binary Search Tree Review

Binary search tree:

» All nodes have at most 2 children

v

Each node stores (key, object) pair

v

All descendants to left have smaller keys

v

All descendants to the right have larger keys
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Binary Search Tree Review

Binary search tree:

» All nodes have at most 2 children

v

Each node stores (key, object) pair

v

All descendants to left have smaller keys

v

All descendants to the right have larger keys

Lookup: follow path from root!
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Dictionary Operations in Simple Binary Search Tree
insert(x):

> If tree empty, put x at root

» Else if x < root.key recursively insert into left child

» Else (if x > root.key) recursively insert into right child
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Dictionary Operations in Simple Binary Search Tree
insert(x):

> If tree empty, put x at root

» Else if x < root.key recursively insert into left child

» Else (if x > root.key) recursively insert into right child

Example: HOPK I N S
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Simply Binary Search Tree: Analysis

Pluses: easy to implement
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(Worst-case) Running time: if depth d, then ©(d)
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Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)
» If very unbalanced d could be Q(n)!

Want to make tree balanced.
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Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)
» If very unbalanced d could be Q(n)!

Want to make tree balanced.

Rest of today:
» B-trees: perfect balance, not binary
» Red-black trees: approximate balance, binary

» Turn out to be related!
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B-Trees
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B-tree Definition

Parameter t > 2.
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B-tree Definition

Parameter t > 2.

Definition (B-tree with parameter t)

1. Each node has between t -1 and 2t - 1 keys in it (except the root has between 1 and
2t -1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1, a2, ...,ak] and the children are [v1, va,..., vk, 1], then the
tree rooted at v; contains only keys that are at least a;_; and at most a; (except the the
edge cases: the tree rooted at vy has keys less than a;, and the tree rooted at vg,1 has
keys at least ay).

3. All leaves are at the same depth.
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B-tree Definition

Parameter t > 2.

Definition (B-tree with parameter t)

1. Each node has between t -1 and 2t - 1 keys in it (except the root has between 1 and
2t -1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1, a2, ...,ak] and the children are [v1, va,..., vk, 1], then the
tree rooted at v; contains only keys that are at least a;_; and at most a; (except the the
edge cases: the tree rooted at vy has keys less than a;, and the tree rooted at vg,1 has
keys at least ay).

3. All leaves are at the same depth.

When t = 2 known as a 2-3-4 tree, since # children either 2, 3, or 4
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B-tree: Example

t=3:
» Root has between 1 and 5 keys, non-roots have between 2 and 5 keys

> Non-leaves have between 3 and 6 children (root can have fewer).

(ABcD)(KL) (NO) (TYZ)
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Lookups

Binary search in array at root. Finished if find item, else get pointer to appropriate child,
recurse.

(ABCD)(KL) (NO) (TYZ)
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Insert(x)

(ABCD](KL) (NO) (TYZ)

Obvious approach: do a lookup, put x in leaf where it should be.

» Example: insert E
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Insert(x)

(ABCD](KL) (NO) (TYZ)

Obvious approach: do a lookup, put x in leaf where it should be.
» Example: insert E
Problem: What if leaf is full (already has 2t - 1 keys)?
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Insert(x)

(ABCD](KL) (NO) (TYZ)

Obvious approach: do a lookup, put x in leaf where it should be.
» Example: insert E

Problem: What if leaf is full (already has 2t - 1 keys)?

Split:
» Only used on full nodes (nodes with 2t - 1 keys) whose parents are not full.
» Pull median of its keys up to its parent
» Split remaining 2t — 2 keys into two nodes of t — 1 keys each. Reconnect appropriately.
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Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.
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Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.
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Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.
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Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.

Note: since split on the way down, when a node is split, its parent is not full!
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Example continued
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Example continued

Insert S, U, V:
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Example continued

Insert S, U, V:
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Example continued

Insert S, U, V:

Insert P:
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Example continued

Insert S, U, V:

Insert P:
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):
» No split:
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):

» No split: only leaf changes, was not full (or would have split)
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):

» No split: only leaf changes, was not full (or would have split)
» Split:
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):
» No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t -1 keys.
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):
» No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t -1 keys.

Second property (correct degrees, subtrees have keys in correct ranges):
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Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v

First property (all non-leaves other than root have between t -1 and 2t -1 keys):
» No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t -1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. v/
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B-tree running time

Suppose n keys, depth d
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Lookup:

» Binary search on array in each node we pass through
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B-tree running time

Suppose n keys, depth d < O(log, n)

Lookup:

» Binary search on array in each node we pass through = O(log t) time per node.
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B-tree running time

Suppose n keys, depth d < O(log, n)

Lookup:
» Binary search on array in each node we pass through = O(log t) time per node.
» Total time O(d xlogt) = O(log, n xlogt) = O( x log t) = O(log n)

log n
log t
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node.

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node.

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
> Insert into leaf:
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
* Insert into leaf: O(t)
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
* Insert into leaf: O(t)
> Splitting time:
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf

* Insert into leaf: O(t)

> Splitting time: O(t) per split
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node.

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
* Insert into leaf: O(t)

» Splitting time: O(t) per split = O(td) = O(tlog, n) total
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B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(log t) time per node.

» Total time O(d xlogt) = O(log, nx logt) = O('I:;i't’ x log t) = O(log n)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf

* Insert into leaf: O(t)

» Splitting time: O(t) per split = O(td) = O(tlog, n) total
» O(tlog, n) = O(@ log n) total
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B-tree notes

Used a lot in databases

> Large t: shallow trees. Fits well with memory hierarchy
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B-tree notes

Used a lot in databases

> Large t: shallow trees. Fits well with memory hierarchy

t=2:
> 2-3-4 tree

» Can be implemented as binary tree using red-black trees
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Red-Black Trees
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Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

Michael Dinitz Lecture 6: Balanced Search Trees September 12, 2024 19/25



Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

» Classical and super important data structure question

» Many solutions!

Michael Dinitz Lecture 6: Balanced Search Trees

September 12, 2024

19/25



Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

» Classical and super important data structure question
» Many solutions!

Most famous: red-black trees
» Default in Linux kernel, used to optimize Java HashMap, ...
» Today: Quick overview, connection to 2-3-4 trees.

» Not traditional or practical point of view on red-black trees. See book!
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
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2-3-4 trees to binary
Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)

Nodes in 2-3-4 tree have degree 2, 3, or 4
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good!
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good!
» Degree 4:
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
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Nodes in 2-3-4 tree have degree 2, 3, or 4

» Degree 2: good!
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)

Nodes in 2-3-4 tree have degree 2, 3, or 4

» Degree 2: good!

» Degree 4:

» Degree 3:
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2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?
» No: can’t have perfect balance!
» Just need depth O(log n)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good!

» Degree 4:
» Degree 3:
red glue
IRP R
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Important Properties

red glue

o R
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Important Properties

e R

1. Never have two red edges in a row.
> Red edge is “internal”, never have more than one “internal” edge in a row.
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Important Properties

red glue
R R
1. Never have two red edges in a row.
> Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
> All leaves in 2-3-4 tree at same distance from root
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Important Properties

red glue
R R
1. Never have two red edges in a row.
> Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
> All leaves in 2-3-4 tree at same distance from root

== path from root to deepest leaf <2 x path to shallowest leaf
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Important Properties

red glue
R R
1. Never have two red edges in a row.
> Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
> All leaves in 2-3-4 tree at same distance from root

== path from root to deepest leaf <2 x path to shallowest leaf
== depth < O(logn)
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Insert
Want to insert while preserving two properties.
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
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Easy cases:
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:
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Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Harder cases:
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Tree Rotations

Used in many different tree constructions.
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Tree Rotations

Used in many different tree constructions.
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Using Rotations
Can use rotations to “fix" hard cases. Example:

inserting G
change colors
right rotate R —
left rotate E — 0
O L] O (M C .
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End

A few more complications to deal with — see lecture notes, textbook.
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End

A few more complications to deal with — see lecture notes, textbook.

Main points:
» Red-Black trees can be thought of as a binary implementation of 2-3-4 trees
» Approximately balanced, so O(log n) lookup time
» Insert time (basically) same as 2-3-4 tree, so also O(log n).

» See book for direct approach (not through 2-3-4 trees).
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