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Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct
output as e�ciently as possible.

Data structures: sequence of operations!

� Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, . . .

Last time: analyzed the (worst-case) cost of each operation.
What about (worst-case) cost of sequence of operations?
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Definition & Example

Definition

The amortized cost of a sequence of n operations is the total cost of the sequence divided by
n.

“Average cost per operation” (but no randomness!)

Example: 100 operations of cost 1, then 1 operation of cost 100

� Normal worst-case analysis: 100

� Amortized cost: 200�101 ≈ 2
If we care about total time (e.g., using data structure in larger algorithm) then worst-case too
pessimistic
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Amortized Algorithm

Still want worst-case, but worst-case over sequences rather than single operations.

Maybe only possible way to have an expensive operation is to have a bunch of cheap
operations: amortized cost always small!

Definition

If the amortized cost of every sequence of n operations is at most f (n), then the amortized
cost or amortized complexity of the algorithm is at most f (n).
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Example: Stack From Array
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Stack Using Array

Stack:

� Last In First Out (LIFO)

� Push: add element to stack

� Pop: Remove the most recently added element.

Building a stack with an array A:

� Initialize: top = 0

� Push(x): A[top] = x; top++

� Pop: top--; Return A[top]
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End of Array

What if array is full (n elements)?

Make new, bigger array, copy old array over

� Cost: free to create new array, each copy costs 1

� Worst case: a single Push could cost ⌦(n)!
New array has size n + 1:
� Sequence of n Push operations. Total cost: ∑n

i=1 i = n(n+1)
2 =⇥(n2).

� Amortized cost: ⇥(n) (same as worst single operation!)
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Better Idea

Instead of increasing from n to n + 1:

increase to 2n

Consider any sequence of n operations.

� Have to double when array has size 2,4,8,16,32,64, . . . , �logn�
� Total time spent doubling: at most ∑�logn�

i=1 2i ≤ 2n =⇥(n)
� Any operation that doesn’t cause a doubling costs O(1)
� Total cost at most O(n) + n ⋅O(1) = O(n)
� Amortized cost at most O(1)

Amortized analysis explains why it’s better to double than add 1!
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More Complicated Analysis: Piggy Banks and Potentials
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Basic Bank: Informal

Can be hard to give good bound directly on total cost.

� Lots of variance: some operations very expensive, some very cheap.

� Idea: “smooth out” the operations.

� “Pay more” for cheap operations, “pay less” for expensive ops.

Use a “bank” to keep track of this

� Cheap operation: add to the bank

� Expensive operation: take from the bank

Charge cheap operations more, use extra to pay for expensive operations
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Basic Bank: Formal

Bank L.

� Initially L = 0
� Li = value of bank ofter operation i (so L0 = 0).

Operation i :

� Cost ci� “Amortized cost” c
′
i = ci +�L = ci + Li − Li−1 �⇒ ci = c

′
i + Li−1 − Li

Total cost of sequence:

n�
i=1

ci = n�
i=1
�c ′i + Li−1 − Li� = n�

i=1
c
′
i +

n�
i=1
(Li−1 − Li ) = � n�

i=1
c
′
i � + L0 − Ln

So if L0 = 0 and Ln ≥ 0 (bank not negative): ∑n
i=1 ci ≤ ∑n

i=1 c
′
i� If c

′
i ≤ f (n) for all i , then “true” amortized cost (∑n

i=1 ci )�n also at most f (n)!
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Variants

Multiple banks

� Sometimes easier to keep track of / think about.

� No real di↵erence: could think of one bank = sum of all banks

Potential Functions:

� “Bank analogy”: we choose how much to deposit/withdraw.

� New analogy: “potential energy”. Function of state of system.

� Rename L to �: all previous analysis works same!

� Sometimes easier to think about: just define once at the beginning, instead of for each
operation.
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Example: Binary Counter
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Binary Counter

Super simple setup: binary counter stored in array A.

� Least significant bit in A[0], then A[1], . . .
� Don’t worry about length of array (infinite, or long enough)

� Only operation is increment.

� Costs 1 to flip any bit.

n increments. Cost of most expensive increment: ⇥(logn).
What about amortized cost?
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Banks

Bank for every bit A[i ]

Flip bit i from 0 to 1: add $ to bank for i

Flip bit i from 1 to 0: remove $ from bank for i

� No bank ever negative (induction)

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 15 / 21

Stith



Analysis

Do an increment, flips k bits �⇒ true cost is k .

� # 0’s flipped to 1:

� # 1’s flipped to 0:

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1�⇒ amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit)= 2
Global: Change in total bank is −(k − 1) + 1 = −k + 2�⇒ amortized cost = c +�L = k + (−k + 2) = 2
Potential function: let � =#1’s in counter.�⇒ amortized cost = c +�� = k + (−k + 2) = 2
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Example: Simple Dictionary
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Setup

Same dictionary problem as last lecture (insert, lookup).� Can we do something simple with just arrays (no trees)?� Give up on worst-case: try for amortized.� Sorted array: inserts ⌦(n) amortized (i ’th insert could take time ⌦(i))� Unsorted array: lookups ⌦(n) amortized

Solution: array of arrays!� A[i ] either empty or a sorted array of exactly 2i elements� No relationship between arrays

Example: insert 1 − 11
A[0] = [5]
A[1] = [2,8]
A[2] = �
A[3] = [1,3,4,6,7,9,10,11]
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Algorithm

Note: With n inserts, at most logn arrays.

Lookup(x)

� Binary search in each (nonempty) array

� Time at most ∑�logn�
i=0 log(2i ) =⇥(log2 n)

Insert(x):

� Create array B = [x]
� i = 0� While A[i ] ≠ �:� Merge B and A[i ] to get B� Set A[i ] = �� i + +
� Set A[i ] = B

Example: insert 12 into

A[0] = [5]
A[1] = [2,8]
A[2] = �
A[3] = [1,3,4,6,7,9,10,11]
A[0] = �
A[1] = �
A[2] = [2,5,8,12]
A[3] = [1,3,4,6,7,9,10,11]
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Insert(x):

� Create array B = [x]
� i = 0� While A[i ] ≠ �:� Merge B and A[i ] to get B� Set A[i ] = �� i + +
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Analysis

Concrete costs:� Merging two arrays of size m costs 2m

Worst case:� Might need to do a merge for every array if all full� Time ∑�logn�
i=0 �2 ⋅ 2i� =⇥(n)

Amortized:� Merge arrays of length 2i one out of every 2i inserts� So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n�2 times, arrays of length 4 at most n�4 times, . . .� Total cost at most �logn��

i=1
n

2i−1 2i+1 =⇥(n logn)
� Amortized cost at most ⇥(logn)!

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 20 / 21



Analysis

Concrete costs:� Merging two arrays of size m costs 2m

Worst case:� Might need to do a merge for every array if all full� Time ∑�logn�
i=0 �2 ⋅ 2i� =⇥(n)

Amortized:� Merge arrays of length 2i one out of every 2i inserts� So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n�2 times, arrays of length 4 at most n�4 times, . . .� Total cost at most �logn��

i=1
n

2i−1 2i+1 =⇥(n logn)
� Amortized cost at most ⇥(logn)!

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 20 / 21



Analysis

Concrete costs:� Merging two arrays of size m costs 2m

Worst case:� Might need to do a merge for every array if all full� Time ∑�logn�
i=0 �2 ⋅ 2i� =⇥(n)

Amortized:� Merge arrays of length 2i one out of every 2i inserts� So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n�2 times, arrays of length 4 at most n�4 times, . . .

� Total cost at most �logn��
i=1

n

2i−1 2i+1 =⇥(n logn)
� Amortized cost at most ⇥(logn)!

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 20 / 21



Analysis

Concrete costs:� Merging two arrays of size m costs 2m

Worst case:� Might need to do a merge for every array if all full� Time ∑�logn�
i=0 �2 ⋅ 2i� =⇥(n)

Amortized:� Merge arrays of length 2i one out of every 2i inserts� So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n�2 times, arrays of length 4 at most n�4 times, . . .� Total cost at most �logn��

i=1
n

2i−1 2i+1 =⇥(n logn)

� Amortized cost at most ⇥(logn)!

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 20 / 21



Analysis

Concrete costs:� Merging two arrays of size m costs 2m

Worst case:� Might need to do a merge for every array if all full� Time ∑�logn�
i=0 �2 ⋅ 2i� =⇥(n)

Amortized:� Merge arrays of length 2i one out of every 2i inserts� So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n�2 times, arrays of length 4 at most n�4 times, . . .� Total cost at most �logn��

i=1
n

2i−1 2i+1 =⇥(n logn)
� Amortized cost at most ⇥(logn)!

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 20 / 21



Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports k operations, say that operation i has amortized cost at most ↵i if for
every sequence which performs with at most mi operations of type i , the total cost is at most∑k

i=1↵imi .

� When analyzing multiple operations, need to use the same bank/potential for all of them!

� With multiple operations, bounds not necessarily unique. Di↵erent amortization schemes
could yield di↵erent bounds, all of which are correct and non-contradictory.
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