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Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct
output as efficiently as possible.

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 2/21



Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct
output as efficiently as possible.

Data structures: sequence of operations!

» Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, ...
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Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct
output as efficiently as possible.

Data structures: sequence of operations!

» Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, ...

Last time: analyzed the (worst-case) cost of each operation.
What about (worst-case) cost of sequence of operations?
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Definition & Example

Definition
The amortized cost of a sequence of n operations is the total cost of the sequence divided by
n.

“Average cost per operation” (but no randomness!)
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Definition & Example

Definition
The amortized cost of a sequence of n operations is the total cost of the sequence divided by
n.

“Average cost per operation” (but no randomness!)

Example: 100 operations of cost 1, then 1 operation of cost 100

» Normal worst-case analysis: 100
> Amortized cost: 200/101 ~ 2
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Definition & Example

Definition
The amortized cost of a sequence of n operations is the total cost of the sequence divided by
n.

“Average cost per operation” (but no randomness!)

Example: 100 operations of cost 1, then 1 operation of cost 100

» Normal worst-case analysis: 100
> Amortized cost: 200/101 ~ 2

If we care about total time (e.g., using data structure in larger algorithm) then worst-case too
pessimistic
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Amortized Algorithm

Still want worst-case, but worst-case over sequences rather than single operations.

Maybe only possible way to have an expensive operation is to have a bunch of cheap
operations: amortized cost always small!
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Amortized Algorithm

Still want worst-case, but worst-case over sequences rather than single operations.

Maybe only possible way to have an expensive operation is to have a bunch of cheap
operations: amortized cost always small!

Definition
If the amortized cost of every sequence of n operations is at most f(n), then the amortized
cost or amortized complexity of the algorithm is at most f(n).
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Example: Stack From Array
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Stack Using Array

Stack:
» Last In First Out (LIFO)

» Push: add element to stack

> Pop: Remove the most recently added element.
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Stack Using Array

Stack:
» Last In First Out (LIFO)
» Push: add element to stack

> Pop: Remove the most recently added element.

i

Building a stack with an array A:
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Stack Using Array

Stack:
» Last In First Out (LIFO)
» Push: add element to stack

> Pop: Remove the most recently added element.

Building a stack with an array A:
> Initialize: top = 0
» Push(x): Al[top] = x; top++
> Pop: top--; Return A[top]
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End of Array

What if array is full (n elements)?
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End of Array

What if array is full (n elements)?

Make new, bigger array, copy old array over
» Cost: free to create new array, each copy costs 1

> Worst case: a single Push could cost 2(n)!
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End of Array

What if array is full (n elements)?

Make new, bigger array, copy old array over
» Cost: free to create new array, each copy costs 1

> Worst case: a single Push could cost 2(n)!

New array has size n+ 1:
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End of Array

What if array is full (n elements)?

Make new, bigger array, copy old array over
» Cost: free to create new array, each copy costs 1

> Worst case: a single Push could cost 2(n)!

New array has size n+ 1:

> Sequence of n Push operations. Total cost: ¥7 , i = "("2+1) = O(n?).
> Amortized cost: ®@(n) (same as worst single operation!)
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Better ldea

Instead of increasing from n to n+ 1:
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Better ldea

Instead of increasing from n to n+1: increase to 2n
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Better ldea

Instead of increasing from n to n+1: increase to 2n

Consider any sequence of n operations. Cle .\J
» Have to double when array has size 2,4,8,16,32,64,... ,M 2
> Total time spent doubling: at most lel__olgnj 2! <2n=0(n)
> Any operation that doesn’t cause a doubling costs O(1)
> Total cost at most O(n) + n- O(1) = O(n)
> Amortized cost at most O(1)
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Better ldea

Instead of increasing from n to n+1: increase to 2n

Consider any sequence of n operations.
» Have to double when array has size 2,4,8,16,32,64,...,|logn|
> Total time spent doubling: at most lelzolgnj 2! <2n=0(n)
> Any operation that doesn’t cause a doubling costs O(1)
> Total cost at most O(n) + n- O(1) = O(n)
> Amortized cost at most O(1)

Amortized analysis explains why it's better to double than add 1!
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More Complicated Analysis: Piggy Banks and Potentials
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Basic Bank: Informal

Can be hard to give good bound directly on total cost.
> Lots of variance: some operations very expensive, some very cheap.

> |dea: “smooth out” the operations.
> “Pay more” for cheap operations, “pay less” for expensive ops.
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Basic Bank: Informal

Can be hard to give good bound directly on total cost.
> Lots of variance: some operations very expensive, some very cheap.
> |dea: “smooth out” the operations.

> “Pay more” for cheap operations, “pay less” for expensive ops.

Use a “bank” to keep track of this
» Cheap operation: add to the bank

> Expensive operation: take from the bank
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Basic Bank: Informal

Can be hard to give good bound directly on total cost.

> Lots of variance: some operations very expensive, some very cheap.

> |dea: “smooth out” the operations.

> “Pay more” for cheap operations, “pay less” for expensive ops.

Use a “bank” to keep track of this
» Cheap operation: add to the bank

> Expensive operation: take from the bank

Charge cheap operations more, use extra to pay for expensive operations
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Basic Bank: Formal

Bank L.
> Initially L=10

» L; = value of bank ofter operation i (so Ly =0).
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Basic Bank: Formal
Bank L.

> Initially L =0

» L; = value of bank ofter operation i (so Ly =0).
Operation i:

» Cost ¢;

> “Amortized cost” CI{ =ci+AL=c;+L;-L; 4
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Basic Bank: Formal
Bank L.

> Initially L =0

» L; = value of bank ofter operation i (so Ly =0).
Operation i:

» Cost ¢;

» “Amortized cost” c| = ci+AL=c;+L;-L;.y = c; = cl+ L;_1-L;
i i
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Basic Bank: Formal

Bank L.

> |Initially L=0

» L; = value of bank ofter operation i (so Ly =0).
Operation i:

» Cost ¢;

> “Amortized cost” ¢; =¢;+ AL=c;+L;i-Liy = ¢i=c,+Lj_1-L,
Total cost of sequence: betesceq by g
. n o 1
Z;c,- = Z(c;+L,-_1-L,-) = Z;CI{+Z;(L;_1—L,-) = (Z;c') +Ly-L,
i= i= i=

i=1 1=
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Basic Bank: Formal

Bank L.

> Initially L=0

» L; = value of bank ofter operation i (so Ly =0).
Operation i:

» Cost ¢;

» “Amortized cost” c| = ci+AL=c;+L;-L;.y = c; = cl+ L;_1-L;
i i

Total cost of sequence:

n n n n n
ZC,'= Z(C’{+L,’_1—L,‘) = ZCI{+Z(L;_1—L,') = (ZCI{)+L0—L,~,
i=1 i=1 i=1 i=1 i=1

So if Ly =0 and L, > 0 (bank not negative): X7, ;< ¥, c;
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Basic Bank: Formal
Bank L.

> Initially L =0

» L; = value of bank ofter operation i (so Ly =0).
Operation i:

» Cost ¢;

> “Amortized cost” CI{ =¢ci+AL=c;+L;-L;.y = ¢; = C'{ +L;_1-L;
Total cost of sequence:
n n n n n
!/ / /
ZC,'= Z(Ci+L,’_1—L,‘) = ZCI.+Z(L;_1—L,') = (ZCI.)+L0—L,~,
i=1 i=1 i=1 i=1 i=1

So if Ly =0 and L, > 0 (bank not negative): X7, ;< ¥, c;
> If ¢; < F(n) for all i, then “true” amortized cost (¥, ¢;)/n also at most f(n)!
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Variants

Multiple banks
> Sometimes easier to keep track of / think about.

» No real difference: could think of one bank = sum of all banks
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Variants

Multiple banks
> Sometimes easier to keep track of / think about.

» No real difference: could think of one bank = sum of all banks

Potential Functions:
> “Bank analogy”: we choose how much to deposit/withdraw.

» New analogy: “potential energy”. Function of state of system.

» Rename L to ®: all previous analysis works same!
> Sometimes easier to think about: just define once at the beginning, instead of for each

operation.
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Example: Binary Counter
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Binary Counter

Super simple setup: binary counter stored in array A.
> Least significant bit in A[0], then A[1], ...
> Don't worry about length of array (infinite, or long enough)
> Only operation is increment.

» Costs 1 to flip any bit.
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Binary Counter

Super simple setup: binary counter stored in array A.
> Least significant bit in A[0], then A[1], ...
> Don't worry about length of array (infinite, or long enough)
> Only operation is increment.

» Costs 1 to flip any bit.

n increments. Cost of most expensive increment:
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Binary Counter

Super simple setup: binary counter stored in array A.
> Least significant bit in A[0], then A[1], ...
> Don't worry about length of array (infinite, or long enough)
> Only operation is increment.

» Costs 1 to flip any bit.

n increments. Cost of most expensive increment: ©@(logn).
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Binary Counter

Super simple setup: binary counter stored in array A.
> Least significant bit in A[0], then A[1], ...
> Don't worry about length of array (infinite, or long enough)
> Only operation is increment.

» Costs 1 to flip any bit.

n increments. Cost of most expensive increment: ©@(logn).

What about amortized cost?
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Banks

Bank for every bit A[i]
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Flip bit i from 0 to 1: add $ to bank for i
Flip bit 7 from 1 to 0: remove $ from bank for i

> No bank ever negative (induction)
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Analysis

Do an increment, flips k bits == true cost is k.
> 4 0's flipped to 1: /l./_
» # 1's flipped to 0:  [¢— {
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Analysis

Do an increment, flips k bits == true cost is k.
> # 0's flipped to 1: 1
> # 1's flipped to 0: k-1
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Analysis

Do an increment, flips k bits == true cost is k.
> # 0's flipped to 1: 1
> # 1's flipped to 0: k-1
Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1
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Analysis

Do an increment, flips k bits == true cost is k.
> # 0's flipped to 1: 1
> # 1's flipped to 0: k-1

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1

== amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit)
=2

Michael Dinitz Lecture 7: Amortized Analysis September 17, 2024 16 /21



Analysis

Do an increment, flips k bits == true cost is k.
> # 0's flipped to 1: 1
> # 1's flipped to 0: k-1
Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1

== amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit)
=2

Global: Change in total bank is -(k-1) +1=-k +2
== amortized cost =c+AL=k+ (-k+2) =2
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Analysis

Do an increment, flips k bits == true cost is k.
> # 0's flipped to 1: 1
> # 1's flipped to 0: k-1
Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1

== amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit)
=2

Global: Change in total bank is -(k-1) +1=-k +2
== amortized cost =c+AL=k+ (-k+2) =2

Potential function: let ® = #1’'s in counter.
== amortized cost = c+ AP =k + (-k+2) =2
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Example: Simple Dictionary
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Setup
Same dictionary problem as last lecture (insert, lookup).

» Can we do something simple with just arrays (no trees)?
> Give up on worst-case: try for amortized.

> Sorted array: inserts £2(n) amortized (i'th insert could take time €(i))
» Unsorted array: lookups 2(n) amortized
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Setup
Same dictionary problem as last lecture (insert, lookup).

» Can we do something simple with just arrays (no trees)?
> Give up on worst-case: try for amortized.

> Sorted array: inserts £2(n) amortized (i'th insert could take time €(i))
» Unsorted array: lookups 2(n) amortized

Solution: array of arrays!
> A[i] either empty or a sorted array of exactly 2' elements
> No relationship between arrays
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Setup
Same dictionary problem as last lecture (insert, lookup).

» Can we do something simple with just arrays (no trees)?
> Give up on worst-case: try for amortized.

> Sorted array: inserts £2(n) amortized (i'th insert could take time €(i))
» Unsorted array: lookups 2(n) amortized

Solution: array of arrays!
> A[i] either empty or a sorted array of exactly 2' elements
> No relationship between arrays

Example: insert 1 -11

A[0] = [5]

A[1] = [2, 8]

A[2] = @
A[3]=1,3,4,6,7,9,10,11]
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Algorithm

Note: With n inserts, at most log n arrays.
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x)
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x)

> Binary search in each (nonempty) array

» Time at most ZI[:»()gnJ log(2') = ©(log? n)
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x)

> Binary search in each (nonempty) array

» Time at most ZI[:»()gnJ log(2') = ©(log? n)

Insert(x):
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x)

> Binary search in each (nonempty) array

» Time at most ZI[:»()gnJ log(2') = ©(log? n)

Insert(x):
> Create array B = [x]
»i=0
> While Ali] + @:
> Merge B and A[i] to get B
> Set A[i] =@

>+ +

» Set A[i]=B
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x) Example: insert 12 into
> Binary search in each (nonempty) array £ CL, 5, <5/[ZJ
n . A[0] =
» Time at most lelzoog JIog(2’) = O(log? n) A:1: EEE ; o5
Insert(x): Al2] =2 &
> Create array B = [x] A[3]=[1,3,4,6,7,9,10,11]

» =0

> While A[i] + @:
> Merge B and A[i] to get B
> Set A[i] =@

>+ +

» Set A[i]=B
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Algorithm

Note: With n inserts, at most log n arrays.

Lookup(x) Example: insert 12 into
> Binary search in each (nonempty) array

| o8] 1o (27) - G (To? A[0] - [5]
» Time at most ). log(2') = O(log“ n
i Yo log(2')=06(log"n) A[1] = [2.8]
Insert(x): Al2] =2
» Create array B = [X] A[3] = [173749 6,7,9,10, 11]
» i=0
> While A[i] + @: A[0] =
> Merge B and Ali] to get B Alll =
> Set A[i] =@ -
> P44 A[2]=1[2,5,8,12]
> Set A[i] = B Al3]=[1,3,4,6,7,9,10,11]
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Analysis
Concrete costs:
> Merging two arrays of size m costs 2m
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Analysis
Concrete costs:
> Merging two arrays of size m costs 2m

Worst case:
» Might need to do a merge for every array if all full

> Time Z“ognj (2 2i) = O(n)
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Analysis
Concrete costs:
> Merging two arrays of size m costs 2m

Worst case:
» Might need to do a merge for every array if all full

> Time Z“ognj (2 2i) = O(n)

Amortized:
» Merge arrays of length 27 one out of every 2/ inserts

> So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n/2 times, arrays of length 4 at most n/4 times, ...
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Analysis
Concrete costs:
> Merging two arrays of size m costs 2m

Worst case:
» Might need to do a merge for every array if all full

> Time zll':og"J (2.27) = ©(n)

Amortized:
» Merge arrays of length 27 one out of every 2/ inserts
> So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at

most n/2 times, arrays of length 4 at most n/4 times, ...

» Total cost at most
|log n]

Y 2in—1 2i*1 = ©(nlog n)
i-1
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Analysis
Concrete costs:
> Merging two arrays of size m costs 2m

Worst case:
» Might need to do a merge for every array if all full

> Time zll':og"J (2.27) = ©(n)

Amortized:
» Merge arrays of length 27 one out of every 2/ inserts
> So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at
most n/2 times, arrays of length 4 at most n/4 times, ...

» Total cost at most
|log n]

Y 2in—1 2i*1 = ©(nlog n)
i-1

» Amortized cost at most @(log n)!
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Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports k operations, say that operation i has amortized cost at most «; if for

every sequence which performs with at most m; operations of type i, the total cost is at most
k

Z,’=1 Ojm;.
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Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition |
If structure supports k operations, say that operation i has amortized cost at most «; if for
every sequence which performs with at most m; operations of type i, the total cost is at most

k
Z,’=1 Ojm;.

> When analyzing multiple operations, need to use the same bank/potential for all of them!

» With multiple operations, bounds not necessarily unique. Different amortization schemes
could yield different bounds, all of which are correct and non-contradictory.
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