
Lecture 8: Priority Queues and Heaps

Michael Dinitz

September 19, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 1 / 20

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

▸ Insert(H,x): insert element x into heap H .

▸ Extract-Min(H): remove and return an element with smallest key

▸ Decrease-Key(H,x,k): decrease the key of x to k .
▸ Meld(H1,H2): replace heaps H1 and H2 with their union

Extra Operations:

▸ Find-Min(H): return the element with smallest key

▸ Delete(H,x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a pointer to an element. No way to lookup, so need a pointer to an element to
change it.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 2 / 20

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

▸ Insert(H,x): insert element x into heap H .

▸ Extract-Min(H): remove and return an element with smallest key

▸ Decrease-Key(H,x,k): decrease the key of x to k .
▸ Meld(H1,H2): replace heaps H1 and H2 with their union

Extra Operations:

▸ Find-Min(H): return the element with smallest key

▸ Delete(H,x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a pointer to an element. No way to lookup, so need a pointer to an element to
change it.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 2 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List

O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array

O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree

O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List O(1) O(n) O(1) O(1)

Sorted Array O(n) O(1) O(n) O(n)

Balanced Search Tree O(logn) O(logn) O(logn) O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 3 / 20

Today and State of the Art

State of the art: strict Fibonacci Heaps.

▸ Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

▸ Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 4 / 20

Binary Heaps

▸ Complete binary tree, except possibly at bottom level.

▸ Heap order: key of any node no larger than key of its children.

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child ≥ key in parent.

7

8

18 11 2512

21 17 19

10

6

parent

child child

Properties:

▸ Since (almost) complete binary tree,
depth Θ(logn)

▸ Min must be at root

Representation:

▸ Pointers to root and rightmost leaf

▸ Every node has pointers to parent and
children

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 5 / 20

Binary Heaps

▸ Complete binary tree, except possibly at bottom level.

▸ Heap order: key of any node no larger than key of its children.

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child ≥ key in parent.

7

8

18 11 2512

21 17 19

10

6

parent

child child

Properties:

▸ Since (almost) complete binary tree,
depth Θ(logn)

▸ Min must be at root

Representation:

▸ Pointers to root and rightmost leaf

▸ Every node has pointers to parent and
children

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 5 / 20

Insert(H,x)

Preserve heap structure: insert x into next
open spot (bottom right, or left of new level if
bottom level full)

▸ Might violate heap order!

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

“Swim up”: as long as x smaller than its
parent, swap with parent

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

Running time: O(logn) worst case (also amortized) via depth

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 6 / 20

Insert(H,x)

Preserve heap structure: insert x into next
open spot (bottom right, or left of new level if
bottom level full)

▸ Might violate heap order!

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

“Swim up”: as long as x smaller than its
parent, swap with parent

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

Running time: O(logn) worst case (also amortized) via depth

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 6 / 20

Insert(H,x)

Preserve heap structure: insert x into next
open spot (bottom right, or left of new level if
bottom level full)

▸ Might violate heap order!

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

“Swim up”: as long as x smaller than its
parent, swap with parent

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element

with element in its parent until heap order is restored.

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap
(violates heap order)

swim up

Running time: O(logn) worst case (also amortized) via depth

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 6 / 20

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

▸ Swap root with final heap element, remove former root.

▸ Sink down: swap root with smaller of its children until heap order restored

exchange
with root

element to
remove

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly

exchange element in root with its smaller child until heap order is restored.

12

8

10 11 2512

21 17 19

7

6

18

8

10 11 2512

21 17 19

7

18

6 remove
from heap

violates
heap order

8

18 11 2512

21 17 19

10

7

6

sink down

Running time: O(logn) worst case (via depth). Amortized: O(1) (not obvious)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 7 / 20

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

▸ Swap root with final heap element, remove former root.

▸ Sink down: swap root with smaller of its children until heap order restored

exchange
with root

element to
remove

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly

exchange element in root with its smaller child until heap order is restored.

12

8

10 11 2512

21 17 19

7

6

18

8

10 11 2512

21 17 19

7

18

6 remove
from heap

violates
heap order

8

18 11 2512

21 17 19

10

7

6

sink down

Running time: O(logn) worst case (via depth). Amortized: O(1) (not obvious)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 7 / 20

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

▸ Swap root with final heap element, remove former root.

▸ Sink down: swap root with smaller of its children until heap order restored

exchange
with root

element to
remove

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly

exchange element in root with its smaller child until heap order is restored.

12

8

10 11 2512

21 17 19

7

6

18

8

10 11 2512

21 17 19

7

18

6 remove
from heap

violates
heap order

8

18 11 2512

21 17 19

10

7

6

sink down

Running time: O(logn) worst case (via depth). Amortized: O(1) (not obvious)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 7 / 20

Decrease-Key(H,x,k)

Decrease key of x to k , “swim up” until heap order restored.

Running time: O(logn) (depth)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 8 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

▸ Inserting: O(n) total
▸ Sinking down:

▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

▸ Inserting: O(n) total
▸ Sinking down:

▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

▸ Inserting: O(n) total
▸ Sinking down:

▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

▸ Inserting: O(n) total

▸ Sinking down:
▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

▸ Inserting: O(n) total
▸ Sinking down:

▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Meld(H1,H2)
Assume both heaps have size n.
▸ Obvious approach: insert each element of H2 into H1. Time: O(n logn)

Better:

▸ Insert all elements of H2 all at once (not fixing heap order)

▸ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

▸ Inserting: O(n) total
▸ Sinking down:

▸ Nodes at height h might have to sink down h.
▸ At most n/2h nodes at height h

log n

∑
h=0

h (
n
2h
) = n

log n

∑
h=0

h
2h
≤ O(n)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 9 / 20

Amortized Extract-Min

Weights: w(x) = depth of x
▸ Root has weight 0, its children have weight 1, etc.

Potential: Φ(H) = ∑x w(x)

Insert: ∆Φ = O(logn) Ô⇒ amortized cost ≤ O(logn) +O(logn) = O(logn)

Extract-Min:

▸ True cost: height h =Θ(logn) of tree, plus O(1) (for initial swap).
▸ ∆Φ: one less node at depth h Ô⇒ ∆Φ = −h
▸ Amortized cost: h +O(1) − h = O(1).

Uses Inserts to “pay for” Extract-Mins.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 10 / 20

Amortized Extract-Min

Weights: w(x) = depth of x
▸ Root has weight 0, its children have weight 1, etc.

Potential: Φ(H) = ∑x w(x)

Insert: ∆Φ = O(logn) Ô⇒ amortized cost ≤ O(logn) +O(logn) = O(logn)

Extract-Min:

▸ True cost: height h =Θ(logn) of tree, plus O(1) (for initial swap).
▸ ∆Φ: one less node at depth h Ô⇒ ∆Φ = −h
▸ Amortized cost: h +O(1) − h = O(1).

Uses Inserts to “pay for” Extract-Mins.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 10 / 20

Amortized Extract-Min

Weights: w(x) = depth of x
▸ Root has weight 0, its children have weight 1, etc.

Potential: Φ(H) = ∑x w(x)

Insert: ∆Φ = O(logn) Ô⇒ amortized cost ≤ O(logn) +O(logn) = O(logn)

Extract-Min:

▸ True cost: height h =Θ(logn) of tree, plus O(1) (for initial swap).
▸ ∆Φ: one less node at depth h Ô⇒ ∆Φ = −h
▸ Amortized cost: h +O(1) − h = O(1).

Uses Inserts to “pay for” Extract-Mins.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 10 / 20

Amortized Extract-Min

Weights: w(x) = depth of x
▸ Root has weight 0, its children have weight 1, etc.

Potential: Φ(H) = ∑x w(x)

Insert: ∆Φ = O(logn) Ô⇒ amortized cost ≤ O(logn) +O(logn) = O(logn)

Extract-Min:

▸ True cost: height h =Θ(logn) of tree, plus O(1) (for initial swap).
▸ ∆Φ: one less node at depth h Ô⇒ ∆Φ = −h
▸ Amortized cost: h +O(1) − h = O(1).

Uses Inserts to “pay for” Extract-Mins.

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 10 / 20

Improvements

Downsides of binary heaps:

▸ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(logn) Extract-Min

▸ Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

▸ Get Insert down to O(1) (amortized)

▸ Meld in O(logn) (worst-case and amortized)

▸ Downside: O(logn) Extract-Min, O(logn) Find-Min

Fibonacci Heaps:

▸ Everything O(1) (amortized) except O(logn) Extract-Min (amortized)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 11 / 20

Improvements

Downsides of binary heaps:

▸ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(logn) Extract-Min

▸ Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

▸ Get Insert down to O(1) (amortized)

▸ Meld in O(logn) (worst-case and amortized)

▸ Downside: O(logn) Extract-Min, O(logn) Find-Min

Fibonacci Heaps:

▸ Everything O(1) (amortized) except O(logn) Extract-Min (amortized)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 11 / 20

Improvements

Downsides of binary heaps:

▸ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(logn) Extract-Min

▸ Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

▸ Get Insert down to O(1) (amortized)

▸ Meld in O(logn) (worst-case and amortized)

▸ Downside: O(logn) Extract-Min, O(logn) Find-Min

Fibonacci Heaps:

▸ Everything O(1) (amortized) except O(logn) Extract-Min (amortized)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 11 / 20

Binomial Heaps
Not based on binary tree anymore! Based on binomial tree.

▸ B0 = single node.

▸ Bk = one Bk−1 linked to another Bk−1.

Binomial tree

Def. A binomial tree of order k is defined recursively:

Order 0: single node.

Order k: one binomial tree of order k – 1 linked to another of order k – 1.

32

B0 B1 B2 B3 B4

Bk-1

Bk-1

BkB0

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 12 / 20

Binomial Heaps
Not based on binary tree anymore! Based on binomial tree.

▸ B0 = single node.

▸ Bk = one Bk−1 linked to another Bk−1.

Binomial tree

Def. A binomial tree of order k is defined recursively:

Order 0: single node.

Order k: one binomial tree of order k – 1 linked to another of order k – 1.

32

B0 B1 B2 B3 B4

Bk-1

Bk-1

BkB0

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 12 / 20

Structure Lemma

Lemma

The order k binomial tree Bk has the following properties:

1. Its height is k .
2. It has 2k nodes

3. The degree of the root is k
4. If we delete the root, we get k binomial trees Bk−1, . . . ,B0.

Binomial tree properties

Properties. Given an order k binomial tree Bk,
Its height is k.
It has 2k nodes.

It has nodes at depth i.
The degree of its root is k.
Deleting its root yields k binomial trees Bk–1, …, B0.

 
Pf. [by induction on k]

33

B4

B1

Bk

Bk+1

B2
B0

(
k
i

)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 13 / 20

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

▸ Write n in binary: baba−1 . . .b1b0.

▸ Tree Bk exists if and only if bk = 1

Ô⇒ at most logn trees, and by lemma each has height ≤ logn

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 14 / 20

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

▸ Write n in binary: baba−1 . . .b1b0.

▸ Tree Bk exists if and only if bk = 1

Ô⇒ at most logn trees, and by lemma each has height ≤ logn

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 14 / 20

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

▸ Write n in binary: baba−1 . . .b1b0.

▸ Tree Bk exists if and only if bk = 1

Ô⇒ at most logn trees, and by lemma each has height ≤ logn
Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 14 / 20

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: Φ(H) = # trees in H
▸ Initially 0

▸ Never negative

Find-Min(H): Scan through roots of trees in H , return min

▸ Correct: each tree heap-ordered, so global min one of the roots

▸ Worst-case: O(logn)
▸ Amortized: doesn’t change potential, also O(logn).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 15 / 20

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: Φ(H) = # trees in H
▸ Initially 0

▸ Never negative

Find-Min(H): Scan through roots of trees in H , return min

▸ Correct: each tree heap-ordered, so global min one of the roots

▸ Worst-case: O(logn)
▸ Amortized: doesn’t change potential, also O(logn).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 15 / 20

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: Φ(H) = # trees in H
▸ Initially 0

▸ Never negative

Find-Min(H): Scan through roots of trees in H , return min

▸ Correct: each tree heap-ordered, so global min one of the roots

▸ Worst-case: O(logn)
▸ Amortized: doesn’t change potential, also O(logn).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 15 / 20

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: Φ(H) = # trees in H
▸ Initially 0

▸ Never negative

Find-Min(H): Scan through roots of trees in H , return min

▸ Correct: each tree heap-ordered, so global min one of the roots

▸ Worst-case: O(logn)
▸ Amortized: doesn’t change potential, also O(logn).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 15 / 20

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: Φ(H) = # trees in H
▸ Initially 0

▸ Never negative

Find-Min(H): Scan through roots of trees in H , return min

▸ Correct: each tree heap-ordered, so global min one of the roots

▸ Worst-case: O(logn)
▸ Amortized: doesn’t change potential, also O(logn).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 15 / 20

Meld(H1,H2): Link

Key operation: we’ll use Meld to do Insert and Extract-Min

Warmup: H1,H2 both single trees of same order k .
▸ Union has size 2k + 2k = 2k+1: just a single Bk+1

▸ Easy to make a Bk+1 out of two Bk ’s!

Binomial heap: meld

Meld operation. Given two binomial heaps H1 and H2, (destructively) 
replace with a binomial heap H that is the union of the two.

 
Warmup. Easy if H1 and H2 are both binomial trees of order k.

Connect roots of H1 and H2.

Choose node with smaller key to be root of H.

37

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

H1 H2

Link of two trees.

▸ Worst-case time: O(1) (create a
single link). Normalize: call 1

▸ ∆Φ: two trees to one: −1

▸ Amortized cost:
1 − 1 = 0 = O(1).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 16 / 20

Meld(H1,H2): Link

Key operation: we’ll use Meld to do Insert and Extract-Min

Warmup: H1,H2 both single trees of same order k .
▸ Union has size 2k + 2k = 2k+1: just a single Bk+1

▸ Easy to make a Bk+1 out of two Bk ’s!

Binomial heap: meld

Meld operation. Given two binomial heaps H1 and H2, (destructively) 
replace with a binomial heap H that is the union of the two.

 
Warmup. Easy if H1 and H2 are both binomial trees of order k.

Connect roots of H1 and H2.

Choose node with smaller key to be root of H.

37

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

H1 H2

Link of two trees.

▸ Worst-case time: O(1) (create a
single link). Normalize: call 1

▸ ∆Φ: two trees to one: −1

▸ Amortized cost:
1 − 1 = 0 = O(1).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 16 / 20

Meld(H1,H2): Link

Key operation: we’ll use Meld to do Insert and Extract-Min

Warmup: H1,H2 both single trees of same order k .
▸ Union has size 2k + 2k = 2k+1: just a single Bk+1

▸ Easy to make a Bk+1 out of two Bk ’s!

Binomial heap: meld

Meld operation. Given two binomial heaps H1 and H2, (destructively)  
replace with a binomial heap H that is the union of the two.

 
Warmup. Easy if H1 and H2 are both binomial trees of order k.

Connect roots of H1 and H2.

Choose node with smaller key to be root of H.

37

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

H1 H2

Link of two trees.

▸ Worst-case time: O(1) (create a
single link). Normalize: call 1

▸ ∆Φ: two trees to one: −1

▸ Amortized cost:
1 − 1 = 0 = O(1).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 16 / 20

Meld(H1,H2): Link

Key operation: we’ll use Meld to do Insert and Extract-Min

Warmup: H1,H2 both single trees of same order k .
▸ Union has size 2k + 2k = 2k+1: just a single Bk+1

▸ Easy to make a Bk+1 out of two Bk ’s!

Binomial heap: meld

Meld operation. Given two binomial heaps H1 and H2, (destructively)  
replace with a binomial heap H that is the union of the two.

 
Warmup. Easy if H1 and H2 are both binomial trees of order k.

Connect roots of H1 and H2.

Choose node with smaller key to be root of H.

37

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

H1 H2

Link of two trees.

▸ Worst-case time: O(1) (create a
single link). Normalize: call 1

▸ ∆Φ: two trees to one: −1

▸ Amortized cost:
1 − 1 = 0 = O(1).

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 16 / 20

Meld(H1,H2): General Case
(Almost) just like binary addition!

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

18

12

41

28 33 25

3715 7

3

3

55

45 32

30

24

23 22

50

48 31 17

448 29 10

18

12

12

18

25

377

41

28 33 25

3715 7

3

6

+

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 17 / 20

Meld(H1,H2): Analysis

Easy to prove correct (exercise for home).

Running time:

▸ Worst case: O(1) per “order” k Ô⇒ ≤ O(logn)
▸ Amortized: Potential does not go up, but could stay the same
Ô⇒ O(logn) amortized

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 18 / 20

Insert(H,x)

Use Meld:

▸ Create new heap H ′ with one B0 consisting of just x
▸ Meld(H,H ′)

Correctness: Obvious

Running Time:

▸ Worst case: O(logn) (via Meld)
▸ Amortized:

▸ Like incrementing a binary counter!
▸ If we link k trees, potential goes down by k − 1
▸ Cost = # links plus 1 (for making new heap)
▸ Amortized cost = k + 1 +∆Φ = k + 1 − (k − 1) = 2 = O(1)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 19 / 20

Insert(H,x)

Use Meld:

▸ Create new heap H ′ with one B0 consisting of just x
▸ Meld(H,H ′)

Correctness: Obvious

Running Time:

▸ Worst case: O(logn) (via Meld)

▸ Amortized:
▸ Like incrementing a binary counter!
▸ If we link k trees, potential goes down by k − 1
▸ Cost = # links plus 1 (for making new heap)
▸ Amortized cost = k + 1 +∆Φ = k + 1 − (k − 1) = 2 = O(1)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 19 / 20

Insert(H,x)

Use Meld:

▸ Create new heap H ′ with one B0 consisting of just x
▸ Meld(H,H ′)

Correctness: Obvious

Running Time:

▸ Worst case: O(logn) (via Meld)
▸ Amortized:

▸ Like incrementing a binary counter!

▸ If we link k trees, potential goes down by k − 1
▸ Cost = # links plus 1 (for making new heap)
▸ Amortized cost = k + 1 +∆Φ = k + 1 − (k − 1) = 2 = O(1)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 19 / 20

Insert(H,x)

Use Meld:

▸ Create new heap H ′ with one B0 consisting of just x
▸ Meld(H,H ′)

Correctness: Obvious

Running Time:

▸ Worst case: O(logn) (via Meld)
▸ Amortized:

▸ Like incrementing a binary counter!
▸ If we link k trees, potential goes down by k − 1
▸ Cost = # links plus 1 (for making new heap)
▸ Amortized cost = k + 1 +∆Φ = k + 1 − (k − 1) = 2 = O(1)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 19 / 20

Extract-Min(H)

Use Meld again!

▸ O(logn) to Find-Min: one of the roots.

▸ Delete and return this root: tree turns into a new heap!

▸ Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

▸ Worst-Case: O(logn) from creating new heap, Meld
▸ Amortized:

▸ Potential can go up! But by at most logn
▸ Amortized time at most O(logn) + logn = O(logn)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 20 / 20

Extract-Min(H)

Use Meld again!

▸ O(logn) to Find-Min: one of the roots.

▸ Delete and return this root: tree turns into a new heap!

▸ Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

▸ Worst-Case: O(logn) from creating new heap, Meld
▸ Amortized:

▸ Potential can go up! But by at most logn
▸ Amortized time at most O(logn) + logn = O(logn)

Michael Dinitz Lecture 8: Priority Queues and Heaps September 18, 2024 20 / 20

