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Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

� Make-Set(x): create a new set containing just x (i.e., {x})
� Union(x,y): Replace set containing x (S) and set containing y (T ) with single set S ∪T

� Find(x): Return representative of set containing x

Rules: every set has a unique representative.

� If x and y are in same set, Find(x) = Find(y)

� If x and y are in di↵erent sets, then Find(x) ≠ Find(y)

� Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!

Michael Dinitz Lecture 9: Union-Find September 24, 2024 2 / 21



Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

� Make-Set(x): create a new set containing just x (i.e., {x})
� Union(x,y): Replace set containing x (S) and set containing y (T ) with single set S ∪T

� Find(x): Return representative of set containing x

Rules: every set has a unique representative.

� If x and y are in same set, Find(x) = Find(y)

� If x and y are in di↵erent sets, then Find(x) ≠ Find(y)

� Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!

Michael Dinitz Lecture 9: Union-Find September 24, 2024 2 / 21



Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

� Make-Set(x): create a new set containing just x (i.e., {x})
� Union(x,y): Replace set containing x (S) and set containing y (T ) with single set S ∪T

� Find(x): Return representative of set containing x

Rules: every set has a unique representative.

� If x and y are in same set, Find(x) = Find(y)

� If x and y are in di↵erent sets, then Find(x) ≠ Find(y)

� Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!

Michael Dinitz Lecture 9: Union-Find September 24, 2024 2 / 21



Introduction (II)

We’ll see a few ways of doing this, from e�cient to very e�cient.

CLRS: extremely e�cient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!

Notation and Notes:

� m operations total

� n of which are Make-Sets (so n elements)

� Assume have pointer/access to elements we care about (like last class)
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First Approach: Lists

Linked list for each set.

� Representative of set is head (first element on list)

� Each element has pointer to head and to next element, so stored as triple:(element, head, next)
x z

y

S:

T:

Make-Set(x):

Find(x): return x → head

Michael Dinitz Lecture 9: Union-Find September 24, 2024 4 / 21

D FADED



First Approach: Lists

Linked list for each set.

� Representative of set is head (first element on list)

� Each element has pointer to head and to next element, so stored as triple:(element, head, next)
x z

y

S:

T:
Make-Set(x): x head next

Find(x): return x → head

Michael Dinitz Lecture 9: Union-Find September 24, 2024 4 / 21



First Approach: Lists

Linked list for each set.

� Representative of set is head (first element on list)

� Each element has pointer to head and to next element, so stored as triple:(element, head, next)
x z

y

S:

T:
Make-Set(x): x head next

Find(x): return x → head

Michael Dinitz Lecture 9: Union-Find September 24, 2024 4 / 21



Union(x,y)

x z

y

S:

T:

Obvious approach:

� Walk down S to final element z (starting from x)

� Set z → next = y → head

� Walk down T , set every elements head pointer to x → head
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Union(x,y)

x z

y

S:

T:

Running time: O(�S � + �T �)
� �S � to walk down S to final

element

� �T � to walk down T

resetting head pointers

Since �S �, �T � could be ⇥(n),
can only say O(n) for Unions
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Improved Union(x,y)

Observation: don’t need to preserve ordering inside the Union!

� Splice T into S right after x

Running time: O(�T �)
� Still can’t say anything better than O(n)
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Even more improved Union(x,y)
Observation: Why splice T into S? Could also splice S into T .� Time O(�S �)

Splice smaller into bigger!� Store size of set in head node.� Splice smaller into bigger: time O(min(�S �, �T �))� Still only O(n). But now can make stronger amortized guarantee!

Theorem

The amortized cost of Find and Union is O(1), and the amortized cost of Make-Set is
O(logn).
Corollary

The total running time is O(m + n logn).
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Amortized Analysis of List Algorithm
Banking/accounting argument: bank for every element

� When an element is created (via Make-Set), add logn tokens to its bank

� Find does not a↵ect banks

� When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma
No bank is ever negative.

Proof.
Fix element e. Starts with logn tokens. When do we remove a token?

� When in smaller set of a Union.

� Size of set containing e at least doubles!

� Can only happen at most logn times.
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Amortized Analysis of List Algorithm (cont’d)
Make-Set:

� True cost: O(1)
� Change in banks: logn

�⇒ Amortized cost: O(1) +O(logn) = O(logn)

Find:

� True cost: O(1)
� Change in banks: 0

�⇒ Amortized cost: O(1) + 0 = O(1)
Union:

� True cost: min(�S �, �T �)
� Change in banks: −min(�S �, �T �)

�⇒ Amortized cost: min(�S �, �T �) −min(�S �, �T �) = 0 = O(1).
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Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

� Slow part of Union: updating all head pointers in smaller list.

� Don’t do it!

� Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

� Use this time to “update head” pointers: on Find(x), change pointers of x and all

ancestors to point to root

� Path Compression

Idea 2: Union By Rank

� Size of set was important for lists, less important for trees.

� Choose which set to splice into which by rank of trees (related to height)
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Main Result

Theorem

When using Path Compression and Union By Rank, total time at most O(m log∗ n).
log∗: iterated log2.� log∗ n = # times apply log2 until get to 1

� log∗(265536) = 1 + log∗(65536) = 2 + log∗(16) = 3 + log∗(4) = 4 + log∗(2) = 5
� Basically log∗ n always ≤ 5.

Stronger theorem: total time at most O(m ⋅↵(m,n)).
� ↵(m,n): inverse Ackermann function. Grows even slower than log∗.
� See CLRS for details
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Formal Procedures: Make-Set and Find

Make-Set(x): Set x → rank = 0 and x → parent = x

� Running time: O(1).

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to

root.

� If x → parent = x then return x

� x → parent = Find(x → parent)
� Return x → parent

Running time of Find: depth of x (distance to root)
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Find example

a

z

b

c

x
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Formal Procedure: Union

Link(r1, r2): Only applied to root nodes

� If r1 → rank > r2 → rank , set r2 → parent = r1� If r2 → rank > r1 → rank , set r1 → parent = r2� If r1 → rank = r2 → rank , set r2 → parent = r1 and increment r1 → rank .

Running time of Link: O(1)
Union(x,y): Link(Find(x), Find(y))

� Running time: depth(x) + depth(y)
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Union example

x

z w

y

If z → rank ≥ w → rank

If z → rank = w → rank ,

then (z → rank) + +
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Properties of Ranks

1. If x not a root, then (x → rank) < (x → parent → rank)
2. When doing path compression, if parent of x changes, new parent has rank strictly larger

than old parent

3. x → rank can change only if x a root, and once x is a non-root it never becomes a root

again.

4. When x first reaches rank r , there are at least 2r
nodes in tree rooted at x .

Proof of Property 4.

Induction. Base case: r = 0. ✓
Inductive case: Suppose true for r − 1.
When x first gets rank r , must be because x had rank r − 1 (and was root), unioned with

another set with root z of rank r − 1.�⇒ By induction, at least 2r−1
nodes in each tree�⇒ At least 2r−1 + 2r−1 = 2r

nodes in combined tree.
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Nodes of rank r

Lemma

There are at most n�2r nodes of rank at least r .

Proof.
Let x node of rank at least r . Let Sx be descendants of x when it first got rank r .�⇒ �Sx � ≥ 2r

by property 4.

Let z some other node of rank ≥ r . Without loss of generality, suppose x got rank r before z .

Consider some e ∈ Sx . Then e can’t be in Sz (already in tree with rank ≥ r). So Sx ∩ Sz = �.
�⇒ At most n�2r

nodes of rank ≥ r .
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Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most O(m log∗ n).

m operations total. Analyze each type separately:

� Make-Set: O(1) time each

� Union: two Find operations, plus O(1) other work.
� Find(x): proportional to depth of x . Count number of parent pointers followed, call this

the time.

So at most 2m Finds, want to bound total # parent pointers followed.

� At most one parent pointer to root per Find �⇒ at most O(m) parent pointers to
roots.

� So only need to worry about parent pointers to non-roots.
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Main Result II: Buckets
Put elements in buckets according to rank (only in analysis).

Notation: 2 ↑ i denote a tower of i 2’s

� 2 ↑ 1 = 2, 2 ↑ 2 = 22 = 4, 2 ↑ 3 = 222 = 24 = 16, 2 ↑ 4 = 2222 = 216 = 65536
� log∗(2 ↑ i) = i

B(i) (Bucket i ): All elements of rank at least 2 ↑ (i − 1), at most (2 ↑ i) − 1
� Bucket 0: nodes with rank 0

� Bucket 1: rank at least 1, at most 1

� Bucket 2: rank at least 2, at most 3

� Bucket 3: rank at least 4, at most 15

� Bucket 4: rank at least 16, at most 65535

� At most log∗ n buckets.

From Lemma: at most n�(22↑(i−1)) = n�(2 ↑ i) elements in bucket i .
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Main Result III
Want to bound total # parent pointers (to non-roots) followed over all ≤ 2m Finds.

Type 1: Parent pointers that cross buckets� ≤ log∗ n buckets �⇒ ≤ log∗ n per Find �⇒ ≤ 2m log∗ n = O(m log∗ n) total
Type 2: Parent pointers that do not cross buckets� For each x , let ↵(x) = # times follow parent point from x to parent in same bucket, not

root. Want to show ∑x ↵(x) ≤ O(m log∗ n).� Since x not root when following pointers, always has same rank� Whenever x ’s pointer followed, gets new parent (path compression)�⇒ rank of parent goes up by at least 1 (properties of rank)�⇒ happens at most 2 ↑ i times if x in bucket i�⇒ ↵(x) ≤ 2 ↑ i .
�
x

↵(x) = O(log∗ n)�
i=0 �

x∈B(i)
↵(x) ≤ O(log∗ n)�

i=0 �
x∈B(i)

(2 ↑ i) ≤ O(log∗ n)�
i=0

n

2 ↑ i (2 ↑ i) = O(n log∗ n)
≤ O(m log∗ n)
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