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9.1 Introduction and Problem Definition

In this lecture we’ll talk about the Union-Find problem / data structure, which is also sometimes
called the disjoint sets problem. Informally, we want to maintain a data structure of disjoint sets
that allows to to take the union of sets, and to figure out which set a given element is in. There
are many uses for this, particularly in graph algorithms (which we’ll see later). For now, we’re just
doing it as an interesting data structure.

Slightly more formally, we want a data structure which supports the following operations:

1. Make-Set(x): create a new set containing just the element x, i.e. the set {x}.

2. Union(x, y): replace the set containing x (call it S) and the set containing y (call it T ) with
the single set S ∪ T .

3. Find(x): return the representative for the set containing x

Let’s examine these operations, particularly Find, in a little more detail. Suppose we’re at some
point in the operation of this data structure, so there is some collection of disjoint sets. We
require every set to have a unique representative, which must be an element in the set. So if we
call Find(x) and Find(y) and x and y are in the same set, the two calls must return the same
representative (which could be x, y, or some other element z in the same set). And of course, since
the representative must be in the set if x and y are in different sets then when we call Find on
them we must get back different representatives. So we can think of the representative as being
the “name” of the set.

We’ll see a few ways of doing this reasonably efficiently, and in the textbook there is an extremely
efficient method. One nice thing about Union-Find is that even simple things work pretty well, but
we don’t hit a limit to improvement until we get very, very strong bounds.

Let’s fix some notation to start: there are m operations total, n of which are Make-Set operations
(so the “number of elements” is n, like usual). One other thing to note is the assumption implicit
in the Union and Find operations that we already have access to the elements that we care about:
we’re not concerned with how the algorithm known about some element x, but rather will simply
assume that the algorithm has access to whatever elements it creates.

9.2 Lists

One simple data structure would to keep a linked list for each set. In the simplest version, we
have a list for set and each element is an element in the list. We will also add a pointer from each
element to the head of the list (the head will be the representative). So Make-Set(x) is easy: we
just set x → head = x and x → next = NULL, as the following figure shows.
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x head next

Find(x) is also easy: we can just return x → head (note that this uses the assumption that we
have access to x: the algorithm does not need to search the lists for x, but rather by assumption
already knows where it is).

But what about Union(x, y)? Let S be the list containing x, and let T be the list containing y.
Then initially the data looks like the following figure.

x z

y

S:

T:

The obvious thing to do is traverse S until we get to the final element (say z), then set z → next =
y → head, then walk down T (starting from y → head) setting all of the head pointers to x → head.
After the traversal down S the data looks like

x z

y

S:

T:

After the traversal down T our union is complete, and the data looks like
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x z

y

S:

T:
This takes O(|S|+ |T |) time. Since |S| and |T | might each be Ω(n), this gives a bound of only O(n)
on Unions (note that Make-Set and Find each take constant time).

Note that this can be bad even when |S| or |T | is small, say even a single element! Here’s one
obvious improvement: add T to the middle of S, rather than to the end. More precisely, add it
right after x. Instead of walking down S to get z to be the final element, we could set z = x → next,
then set x → next = y → head, then walk down T (changing each head pointer to x → head) until
we get to the final element w and set w → next = z. So T is “spliced” into S right after x. In our
example, after doing this our data structure looks like

x

y

S:

T:

This decreases the time to O(|T |), since we only need to traverse T and not S. Unfortunately, this
can still be bad – clearly |T | can be Ω(n).

Let’s make one more modification. In the head node for each set we’ll store the size of the set,
i.e. the length of the list. This lets us always insert the shorter list into the longer one, so the time
for a Union becomes O(min{|S|, |T |}). Clearly this minimum can also be n, but now it turns out
we can get a strong amortized bound!

Theorem 9.2.1 The total running time is O(m + n log n) (recall that m is the total number of
operations and n is the number of Make-Set operations).

Proof: Find and Make-Set are clearly constant time, so their total cost is covered in the O(m).
So we need to argue that the total cost of all of the Union operations is O(m + n log n). In fact,
we’ll see that they only cost O(n log n).

To bound the total cost of all of the Unions, we can split up the cost among the elements (this is
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sometimes called charging the elements). Suppose we do a union of S and T where |T | ≤ |S|. Then
this takes time O(|T |), so we can charge each element in T an O(1) amount to pay for it (note
that no elements in S get charged). For each element e, let α(e) be the total charge to e of all the
operations. The total running time is thus ∑

e

α(e),

so we just need to analyze how many times each element can be charged (note the similarity to
what we did last class with the binary counter, where we switched to analyzing it bit-by-bit rather
than operation-by-operation).

So how large can α(e) be? By definition, e is only charged when it is in the smaller of the two sets
being unioned. This means that whenever e is charged, the size of the set containing it at least
doubles! Thus α(e) ≤ O(log n), and thus the total running time of all of the Union operations is
at most O(n log n).

It’s also possible (and not too hard) to prove the above theorem by using a piggy bank argument.
Suppose that we put log n tokens on every element when it is created through a Make-Set (note
that this increases the amortized cost of Make-Set from O(1) to O(log n)). Then when we do a
Union, we can take a token from each element in the smaller of S, T , which is enough to pay for
the true cost (which is min{|S|, |T |}). Note that by the discussion in the proof, since each element
is charged only log n times, the number of tokens on any element is always nonnegative So now
Union only has O(1) amortized cost. And clearly Finds take only O(1) time and do not change the
banks, so their amortized cost is also O(1). This implies the theorem.

Is this analysis tight? Let’s give an example to show that it is, i.e. the Union operations might
really cost Ω(n log n) using this algorithm. Suppose we first do all n Make-Set operations, then use
n/2 Unions to create n/2 sets of size 2, then n/4 unions to create n/4 sets of size 4, etc. Since the
running time of Union(S, T ) is Ω(min{|S|, |T |}), the time to union two equal sized sets is at least
the size of the sets. Thus the first set of Unions takes time n

2 · 1, the second set takes time n
4 · 2, the

third set takes times n
8 · 4, etc. At level i of this process, the total work is n

2i
· 2i−1 = n/2. Since

there are log n levels, this means the total running time is Ω(n log n).

9.3 Better data structure: Trees

Even though the running time of the list-based data structure is pretty fast, let’s think of ways we
could make it even faster. How fast can we make a union-find data structure?

One idea is that instead of updating all the head pointers in list T (or whichever was shorter) when
we perform a Union, we could do this in a lazy way, just pointing the head of T to the head of S and
then waiting until we actually perform a find operation on some item x before updating its pointer.
This will decrease the cost of the Union operations but will increase the cost of Find operations
because we may have to take multiple hops. Notice that by doing this we have a collection of trees,
with all links pointing up. The idea of updating the parent links when we do a Find operation is
usually called path compression.

Another idea is that rather than deciding which of the two heads (or roots) should be the new
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one based on the size of their sets, perhaps there is some other quantity that would give us better
performance. In particular, it turns out we can do better by setting the new root based on which
tree has larger rank, which we will define in a minute.

We will prove that by implementing the two optimizations described above (lazy updates / path
compression and union-by-rank), the total cost is bounded above by O(m log∗ n), where log∗ n is
the number of times you need to take log2 until you get down to 1. For instance,

log∗(265536) = 1 + log∗(65536) = 2 + log∗(16) = 3 + log∗(4) = 4 + log∗(2) = 5.

So, basically, log∗ n is never bigger than 5. Technically, the running time of this algorithm is even
better: O(m · α(m,n)) where α is the inverse-Ackermann function which grows even more slowly
than log∗. This is what’s proved in the book, and I’d encourage you to read it. But the log∗ n
bound is hard enough to prove – let’s not go completely overboard!

We now describe the procedure more specifically. Each element (node) will have two fields other
than the element: a parent pointer that points to its parent in its tree (or itself if it is the root)
and a rank, which is an integer used to determine which node becomes the new root in a Union
operation. The operations are as follows.

MakeSet(x): set x → rank = 0 and x → parent = x. This takes constant time.

Find(x): starting from x, follow the parent pointers until you reach the root. Update the parent
pointers of x and all the nodes we pass over to point to the root. This is called path compression.
The running time for Find(x) is proportional to (original) distance of x to its root.

Link(root1, root2): This operation is only applied to root nodes. If root1 has strictly larger
rank than root2, set root2→ parent to root1. If root2 has strictly larger rank than root1, set
root1→ parent to root2. If they have the same rank, set root2→ parent to root1 and increase the
root1→ rank by 1.

Union(x, y): Do Link(Find(x), Find(y)).

Let’s do a quick example. First, a Find. If we do Find(x) on this:
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a

z

b

c

x

we end up with:

a

z

bcx

(where we are not showing ranks)

Now let’s see a union. If we start with
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x

z w

y

and do Union(x, y), then if z has rank at least as large as the rank of w, we end up with

x

z

w

y

If z and w started out with exactly the same rank, then this would increase the rank of z by 1.

Properties of Ranks: We first develop some easy properties that ranks have – these will later
help us analyze the full process, and are all easy to prove by induction.

1. If x is not a root, then its rank is strictly less than its parent’s rank. Easy to see by induction:
Union maintains this, and so does Find.

2. So when we do path compression, if the parent of x changes, then its new parent has rank
strictly larger than its old parent.

3. The rank of x can only change if x is a root, and once x a non-root it never becomes a root
again.

4. When x first reaches rank r, it must have at least 2r nodes in its tree. Induction: Base case
of r = 0 is true by Make-Set. Inductive step: when x first reaches r it must be because it had
rank r − 1 and was the root of a tree when a union was taken with another tree whose root
also had rank r−1, and x became the root of the new tree. So by induction both trees had at
least 2r−1 nodes, so when x got rank r it was the root of a tree with at least 2r−1+2r−1 = 2r

nodes.
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Let’s now prove an important lemma about ranks which uses these properties.

Lemma 9.3.1 There are at most n/2r nodes of rank at least r.

Proof: Let x be a node of rank at least r. By property 4 above, when x first reached rank r
there were at least 2r nodes in its tree. Let Sx be these elements. By property 1, they all had rank
strictly less than r at that point in time, and by property 3 their rank never changes again, so they
currently all have rank less than r.

Let z be a different element with rank at least r. We claim that Sx and Sz are disjoint. To see this,
suppose WLOG that z achieved rank r after x did. Then when z first got rank r, its tree must
have been disjoint from whatever tree contained x at that point, since the root of that tree already
has rank at least r (by property 1). Hence Sx and Sz are disjoint.

So now for every node with rank at least r, we have found a set of at least 2r nodes, and all of
these sets are disjoint. Since the total number of nodes is only n, this means that there can be at
most n/2r nodes of rank at least r.

We can now prove the main theorem.

Theorem 9.3.2 The above algorithm has running time at most O(m log∗ n).

Proof: Let’s begin with the easy parts. First, each Make-Set only takes O(1) time, so we don’t
need to worry about them. Moreover, each Union does two Find operations plus a constant amount
of extra work. So, we only need to worry about the time for the (at most 2m) Find operations.
As discussed earlier, the running time of Find(x) is proportional to the depth of x in its tree, so
we’ll just count the number of parent pointers examined and call this the running time. So we
essentially want to prove that the total number of parent pointers examined is O(m log∗ n).

To begin, note that on each Find we only examine a parent pointer of a root once and of a child of
the root once. So there are at most O(m) parent pointers examined that point to a root, so from
now on we will only need to bound the number of parent pointers examined that do not point to
a root.

The first thing we’ll do is put the elements in buckets depending on their rank (note that this is
only in the analysis, not in the actual algorithm). Let 2 ↑ i denote a tower of i 2’s. Bucket 0 will
have all node of rank 0. In general, bucket i will have all nodes of rank 2 ↑ (i− 1) (tower of i− 1
2’s) to (2 ↑ i)− 1 (tower of i 2’s minus 1). So, for example, bucket 1 has all nodes of rank 1, bucket
2 has ranks 2 through 22−1, bucket 3 has ranks 22 through 22

2 −1, bucket 4 has ranks 22
2
through

22
22 − 1, etc. So there are O(log∗ n) buckets. Let B(i) denote the elements in bucket i.

Note that in bucket i, every node has rank at least 2 ↑ (i− 1) and hence by Lemma 9.3.1 there are
at most n/(22↑(i−1)) = n/(2 ↑ i) elements in bucket i.

Now we can use this bucketing to help us upper bound the number of parent pointers exam-
ined. First, note that in each Find operation the number of times we can cross buckets is at most
O(log∗ n), since there are only that many buckets and property 1 guarantees that ranks are increas-
ing as we walk up the tree. Thus the number of times we examine a parent pointer that crosses
buckets is at most O(m log∗ n) (as desired), and hence we will now only try to count the number
of parent pointers we examine that do not cross buckets. This is the harder part – the proof is not
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hard, but it is subtle.

1. For each node x, let α(x) denote the number of times we examine the parent pointer from x
where both x and its parent are in the same bucket and x → parent is not a root. So we are
trying to prove that

∑
x α(x) ≤ O(m log∗ n). We say that x is charged α(x) times.

2. Since x is not a root when it is charged, it is always the same rank whenever it is charged
(by property 3).

3. Whenever x is charged, it gets a new parent because of path compression. Because of property
2, this new parent has rank strictly larger than its old parent. So if x was in bucket i when
it started getting charged, the number of times it can get charged before its parent is from a
different bucket is less than 2 ↑ i. Hence α(x) ≤ 2 ↑ i.

4. Every node in bucket i has rank at least 2 ↑ (i− 1). So by Lemma 9.3.1 the number of nodes
in bucket i is at most n/(2 ↑ i). Thus

∑
x

α(x) =

O(log∗ n)∑
i=0

∑
x∈B(i)

α(x) ≤
O(log∗ n)∑

i=0

∑
x∈B(i)

(2 ↑ i) ≤
O(log∗ n)∑

i=0

n

2 ↑ i
(2 ↑ i) = O(n log∗ n)

≤ O(m log∗ n),

as required.

So to sum up: The total running time is just

O(number of parent pointers examined through at most 2m Finds).

The number of parent pointers examined where the parent is the root is at most O(m) (two per
Find), which is within our desired bound. When we bucket the elements based on their ranks, the
number of parent pointers we examine that go between two elements in different buckets is at most
log∗ n per Find, for a total of O(m log∗ n) as desired. So the only remaining thing is to bound the
number of parent pointers we examine where the parent is not a root, and where both nodes are
in the same bucket. For this, we prove that if x is in bucket i, the number of times such a parent
pointer form x can be examined is at most 2 ↑ i. Since there are at most n/(2 ↑ i) elements in
bucket i, this means the total number of such parent pointers examined from bucket i is at most n.
Since there are only O(log∗ n) buckets, this means that the total number of such parent pointers
examined is at most O(n log∗ n) ≤ O(m log∗ n).
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