[Theory Seminar] Amitabh Basu

When:
April 10, 2019 @ 12:00 pm – 1:00 pm
2019-04-10T12:00:00-04:00
2019-04-10T13:00:00-04:00

Speaker: Amitabh Basu
Affiliation: JHU

Title: Admissibility of solution estimators for stochastic optimization

Abstract:
We look at stochastic optimization problems through the lens of statistical decision theory. In particular, we address admissibility, in the statistical decision theory sense, of the natural sample average estimator for a stochastic optimization problem (which is also known as the empirical risk minimization (ERM) rule in learning literature). It is well known that for general stochastic optimization problems, the sample average estimator may not be admissible. This is known as Stein’s paradox in the statistics literature. We show in this paper that for optimizing stochastic linear functions over compact sets, the sample average estimator is admissible.