Title: Fault Resilient Graph Structures
Speaker: Merav Parter (MIT)
Abstract:
A fault-tolerant (FT) structure for a network is required to continue functioning following the failure of some of the network’s edges or vertices. Fault-resilience can be introduced into the network in several different ways. This talk will focus on a notion of fault-tolerance whereby the structure at hand is augmented (by adding to it various components) so that subsequent to the failure of some of the network’s vertices or edges, the surviving part of the structure is still operational. As this augmentation carries certain costs, it is desirable to minimize the number of added components.We will revise several constructions of sparse fault tolerant structures such as FT spanner and FT shortest-path trees. I will also present a new model for fault resilient network structures that mix two orthogonal protection mechanisms: (a) backup, namely, augmenting the structure with many (redundant) low-cost and fault-prone components, and (b) reinforcement, namely, acquiring high-cost but fault-resistant components. A trade-off between these two mechanisms will be presented in a concrete setting of shortest-path trees.