Speaker: Xue Chen
Affiliation: Northwestern University
Title: Active Regression via Linear-Sample Sparsification
Abstract:
E[||X \wt{\beta} – X\beta^*||_2^2] \leq \eps ||X \beta^* – y||_2^2.
This improves on the best previous result of O(d \log d + d/\eps) from leverage score sampling. We also present results for the inductive setting, showing when \wt{\beta} will generalize to fresh samples; these apply to continuous settings such as polynomial regression. Finally, we show how the techniques yield improved results for the non-linear sparse Fourier transform setting.
Bio: Xue Chen is broadly interested in randomized algorithms and the use of randomness in computation. Specific areas include Fourier transform, learning theory and optimization, and pseudorandomness. He obtained his Ph.D. at the University of Texas at Austin, under the supervision of David Zuckerman. Currently, he is a postdoctoral fellow in Northwestern University.