Joshua
open source statistical hierarchical phrase-based machine translation system
|
00001 // Copyright 2010 the V8 project authors. All rights reserved. 00002 // Redistribution and use in source and binary forms, with or without 00003 // modification, are permitted provided that the following conditions are 00004 // met: 00005 // 00006 // * Redistributions of source code must retain the above copyright 00007 // notice, this list of conditions and the following disclaimer. 00008 // * Redistributions in binary form must reproduce the above 00009 // copyright notice, this list of conditions and the following 00010 // disclaimer in the documentation and/or other materials provided 00011 // with the distribution. 00012 // * Neither the name of Google Inc. nor the names of its 00013 // contributors may be used to endorse or promote products derived 00014 // from this software without specific prior written permission. 00015 // 00016 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00017 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00018 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00019 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 00020 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00021 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 00022 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 00023 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 00024 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00025 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00026 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00027 00028 #ifndef DOUBLE_CONVERSION_DIY_FP_H_ 00029 #define DOUBLE_CONVERSION_DIY_FP_H_ 00030 00031 #include "utils.h" 00032 00033 namespace double_conversion { 00034 00035 // This "Do It Yourself Floating Point" class implements a floating-point number 00036 // with a uint64 significand and an int exponent. Normalized DiyFp numbers will 00037 // have the most significant bit of the significand set. 00038 // Multiplication and Subtraction do not normalize their results. 00039 // DiyFp are not designed to contain special doubles (NaN and Infinity). 00040 class DiyFp { 00041 public: 00042 static const int kSignificandSize = 64; 00043 00044 DiyFp() : f_(0), e_(0) {} 00045 DiyFp(uint64_t f, int e) : f_(f), e_(e) {} 00046 00047 // this = this - other. 00048 // The exponents of both numbers must be the same and the significand of this 00049 // must be bigger than the significand of other. 00050 // The result will not be normalized. 00051 void Subtract(const DiyFp& other) { 00052 ASSERT(e_ == other.e_); 00053 ASSERT(f_ >= other.f_); 00054 f_ -= other.f_; 00055 } 00056 00057 // Returns a - b. 00058 // The exponents of both numbers must be the same and this must be bigger 00059 // than other. The result will not be normalized. 00060 static DiyFp Minus(const DiyFp& a, const DiyFp& b) { 00061 DiyFp result = a; 00062 result.Subtract(b); 00063 return result; 00064 } 00065 00066 00067 // this = this * other. 00068 void Multiply(const DiyFp& other); 00069 00070 // returns a * b; 00071 static DiyFp Times(const DiyFp& a, const DiyFp& b) { 00072 DiyFp result = a; 00073 result.Multiply(b); 00074 return result; 00075 } 00076 00077 void Normalize() { 00078 ASSERT(f_ != 0); 00079 uint64_t f = f_; 00080 int e = e_; 00081 00082 // This method is mainly called for normalizing boundaries. In general 00083 // boundaries need to be shifted by 10 bits. We thus optimize for this case. 00084 const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); 00085 while ((f & k10MSBits) == 0) { 00086 f <<= 10; 00087 e -= 10; 00088 } 00089 while ((f & kUint64MSB) == 0) { 00090 f <<= 1; 00091 e--; 00092 } 00093 f_ = f; 00094 e_ = e; 00095 } 00096 00097 static DiyFp Normalize(const DiyFp& a) { 00098 DiyFp result = a; 00099 result.Normalize(); 00100 return result; 00101 } 00102 00103 uint64_t f() const { return f_; } 00104 int e() const { return e_; } 00105 00106 void set_f(uint64_t new_value) { f_ = new_value; } 00107 void set_e(int new_value) { e_ = new_value; } 00108 00109 private: 00110 static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); 00111 00112 uint64_t f_; 00113 int e_; 00114 }; 00115 00116 } // namespace double_conversion 00117 00118 #endif // DOUBLE_CONVERSION_DIY_FP_H_