Joshua
open source statistical hierarchical phrase-based machine translation system
|
00001 // Copyright 2012 the V8 project authors. All rights reserved. 00002 // Redistribution and use in source and binary forms, with or without 00003 // modification, are permitted provided that the following conditions are 00004 // met: 00005 // 00006 // * Redistributions of source code must retain the above copyright 00007 // notice, this list of conditions and the following disclaimer. 00008 // * Redistributions in binary form must reproduce the above 00009 // copyright notice, this list of conditions and the following 00010 // disclaimer in the documentation and/or other materials provided 00011 // with the distribution. 00012 // * Neither the name of Google Inc. nor the names of its 00013 // contributors may be used to endorse or promote products derived 00014 // from this software without specific prior written permission. 00015 // 00016 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00017 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00018 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00019 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 00020 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00021 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 00022 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 00023 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 00024 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00025 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00026 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00027 00028 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 00029 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 00030 00031 #include "utils.h" 00032 00033 namespace double_conversion { 00034 00035 class DoubleToStringConverter { 00036 public: 00037 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 00038 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 00039 // function returns false. 00040 static const int kMaxFixedDigitsBeforePoint = 60; 00041 static const int kMaxFixedDigitsAfterPoint = 60; 00042 00043 // When calling ToExponential with a requested_digits 00044 // parameter > kMaxExponentialDigits then the function returns false. 00045 static const int kMaxExponentialDigits = 120; 00046 00047 // When calling ToPrecision with a requested_digits 00048 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 00049 // then the function returns false. 00050 static const int kMinPrecisionDigits = 1; 00051 static const int kMaxPrecisionDigits = 120; 00052 00053 enum Flags { 00054 NO_FLAGS = 0, 00055 EMIT_POSITIVE_EXPONENT_SIGN = 1, 00056 EMIT_TRAILING_DECIMAL_POINT = 2, 00057 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 00058 UNIQUE_ZERO = 8 00059 }; 00060 00061 // Flags should be a bit-or combination of the possible Flags-enum. 00062 // - NO_FLAGS: no special flags. 00063 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 00064 // form, emits a '+' for positive exponents. Example: 1.2e+2. 00065 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 00066 // converted into decimal format then a trailing decimal point is appended. 00067 // Example: 2345.0 is converted to "2345.". 00068 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 00069 // emits a trailing '0'-character. This flag requires the 00070 // EXMIT_TRAILING_DECIMAL_POINT flag. 00071 // Example: 2345.0 is converted to "2345.0". 00072 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 00073 // 00074 // Infinity symbol and nan_symbol provide the string representation for these 00075 // special values. If the string is NULL and the special value is encountered 00076 // then the conversion functions return false. 00077 // 00078 // The exponent_character is used in exponential representations. It is 00079 // usually 'e' or 'E'. 00080 // 00081 // When converting to the shortest representation the converter will 00082 // represent input numbers in decimal format if they are in the interval 00083 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 00084 // (lower boundary included, greater boundary excluded). 00085 // Example: with decimal_in_shortest_low = -6 and 00086 // decimal_in_shortest_high = 21: 00087 // ToShortest(0.000001) -> "0.000001" 00088 // ToShortest(0.0000001) -> "1e-7" 00089 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 00090 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 00091 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 00092 // 00093 // When converting to precision mode the converter may add 00094 // max_leading_padding_zeroes before returning the number in exponential 00095 // format. 00096 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 00097 // ToPrecision(0.0000012345, 2) -> "0.0000012" 00098 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 00099 // Similarily the converter may add up to 00100 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 00101 // returning an exponential representation. A zero added by the 00102 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 00103 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 00104 // ToPrecision(230.0, 2) -> "230" 00105 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 00106 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 00107 DoubleToStringConverter(int flags, 00108 const char* infinity_symbol, 00109 const char* nan_symbol, 00110 char exponent_character, 00111 int decimal_in_shortest_low, 00112 int decimal_in_shortest_high, 00113 int max_leading_padding_zeroes_in_precision_mode, 00114 int max_trailing_padding_zeroes_in_precision_mode) 00115 : flags_(flags), 00116 infinity_symbol_(infinity_symbol), 00117 nan_symbol_(nan_symbol), 00118 exponent_character_(exponent_character), 00119 decimal_in_shortest_low_(decimal_in_shortest_low), 00120 decimal_in_shortest_high_(decimal_in_shortest_high), 00121 max_leading_padding_zeroes_in_precision_mode_( 00122 max_leading_padding_zeroes_in_precision_mode), 00123 max_trailing_padding_zeroes_in_precision_mode_( 00124 max_trailing_padding_zeroes_in_precision_mode) { 00125 // When 'trailing zero after the point' is set, then 'trailing point' 00126 // must be set too. 00127 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 00128 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 00129 } 00130 00131 // Returns a converter following the EcmaScript specification. 00132 static const DoubleToStringConverter& EcmaScriptConverter(); 00133 00134 // Computes the shortest string of digits that correctly represent the input 00135 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 00136 // (see constructor) it then either returns a decimal representation, or an 00137 // exponential representation. 00138 // Example with decimal_in_shortest_low = -6, 00139 // decimal_in_shortest_high = 21, 00140 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 00141 // EMIT_TRAILING_DECIMAL_POINT deactived: 00142 // ToShortest(0.000001) -> "0.000001" 00143 // ToShortest(0.0000001) -> "1e-7" 00144 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 00145 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 00146 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 00147 // 00148 // Note: the conversion may round the output if the returned string 00149 // is accurate enough to uniquely identify the input-number. 00150 // For example the most precise representation of the double 9e59 equals 00151 // "899999999999999918767229449717619953810131273674690656206848", but 00152 // the converter will return the shorter (but still correct) "9e59". 00153 // 00154 // Returns true if the conversion succeeds. The conversion always succeeds 00155 // except when the input value is special and no infinity_symbol or 00156 // nan_symbol has been given to the constructor. 00157 bool ToShortest(double value, StringBuilder* result_builder) const { 00158 return ToShortestIeeeNumber(value, result_builder, SHORTEST); 00159 } 00160 00161 // Same as ToShortest, but for single-precision floats. 00162 bool ToShortestSingle(float value, StringBuilder* result_builder) const { 00163 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); 00164 } 00165 00166 00167 // Computes a decimal representation with a fixed number of digits after the 00168 // decimal point. The last emitted digit is rounded. 00169 // 00170 // Examples: 00171 // ToFixed(3.12, 1) -> "3.1" 00172 // ToFixed(3.1415, 3) -> "3.142" 00173 // ToFixed(1234.56789, 4) -> "1234.5679" 00174 // ToFixed(1.23, 5) -> "1.23000" 00175 // ToFixed(0.1, 4) -> "0.1000" 00176 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 00177 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 00178 // ToFixed(0.1, 17) -> "0.10000000000000001" 00179 // 00180 // If requested_digits equals 0, then the tail of the result depends on 00181 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 00182 // Examples, for requested_digits == 0, 00183 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 00184 // - false and false: then 123.45 -> 123 00185 // 0.678 -> 1 00186 // - true and false: then 123.45 -> 123. 00187 // 0.678 -> 1. 00188 // - true and true: then 123.45 -> 123.0 00189 // 0.678 -> 1.0 00190 // 00191 // Returns true if the conversion succeeds. The conversion always succeeds 00192 // except for the following cases: 00193 // - the input value is special and no infinity_symbol or nan_symbol has 00194 // been provided to the constructor, 00195 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 00196 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 00197 // The last two conditions imply that the result will never contain more than 00198 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 00199 // (one additional character for the sign, and one for the decimal point). 00200 bool ToFixed(double value, 00201 int requested_digits, 00202 StringBuilder* result_builder) const; 00203 00204 // Computes a representation in exponential format with requested_digits 00205 // after the decimal point. The last emitted digit is rounded. 00206 // If requested_digits equals -1, then the shortest exponential representation 00207 // is computed. 00208 // 00209 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 00210 // exponent_character set to 'e'. 00211 // ToExponential(3.12, 1) -> "3.1e0" 00212 // ToExponential(5.0, 3) -> "5.000e0" 00213 // ToExponential(0.001, 2) -> "1.00e-3" 00214 // ToExponential(3.1415, -1) -> "3.1415e0" 00215 // ToExponential(3.1415, 4) -> "3.1415e0" 00216 // ToExponential(3.1415, 3) -> "3.142e0" 00217 // ToExponential(123456789000000, 3) -> "1.235e14" 00218 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 00219 // ToExponential(1000000000000000019884624838656.0, 32) -> 00220 // "1.00000000000000001988462483865600e30" 00221 // ToExponential(1234, 0) -> "1e3" 00222 // 00223 // Returns true if the conversion succeeds. The conversion always succeeds 00224 // except for the following cases: 00225 // - the input value is special and no infinity_symbol or nan_symbol has 00226 // been provided to the constructor, 00227 // - 'requested_digits' > kMaxExponentialDigits. 00228 // The last condition implies that the result will never contain more than 00229 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 00230 // decimal point, the decimal point, the exponent character, the 00231 // exponent's sign, and at most 3 exponent digits). 00232 bool ToExponential(double value, 00233 int requested_digits, 00234 StringBuilder* result_builder) const; 00235 00236 // Computes 'precision' leading digits of the given 'value' and returns them 00237 // either in exponential or decimal format, depending on 00238 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 00239 // constructor). 00240 // The last computed digit is rounded. 00241 // 00242 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 00243 // ToPrecision(0.0000012345, 2) -> "0.0000012" 00244 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 00245 // Similarily the converter may add up to 00246 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 00247 // returning an exponential representation. A zero added by the 00248 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 00249 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 00250 // ToPrecision(230.0, 2) -> "230" 00251 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 00252 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 00253 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 00254 // EMIT_TRAILING_ZERO_AFTER_POINT: 00255 // ToPrecision(123450.0, 6) -> "123450" 00256 // ToPrecision(123450.0, 5) -> "123450" 00257 // ToPrecision(123450.0, 4) -> "123500" 00258 // ToPrecision(123450.0, 3) -> "123000" 00259 // ToPrecision(123450.0, 2) -> "1.2e5" 00260 // 00261 // Returns true if the conversion succeeds. The conversion always succeeds 00262 // except for the following cases: 00263 // - the input value is special and no infinity_symbol or nan_symbol has 00264 // been provided to the constructor, 00265 // - precision < kMinPericisionDigits 00266 // - precision > kMaxPrecisionDigits 00267 // The last condition implies that the result will never contain more than 00268 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 00269 // exponent character, the exponent's sign, and at most 3 exponent digits). 00270 bool ToPrecision(double value, 00271 int precision, 00272 StringBuilder* result_builder) const; 00273 00274 enum DtoaMode { 00275 // Produce the shortest correct representation. 00276 // For example the output of 0.299999999999999988897 is (the less accurate 00277 // but correct) 0.3. 00278 SHORTEST, 00279 // Same as SHORTEST, but for single-precision floats. 00280 SHORTEST_SINGLE, 00281 // Produce a fixed number of digits after the decimal point. 00282 // For instance fixed(0.1, 4) becomes 0.1000 00283 // If the input number is big, the output will be big. 00284 FIXED, 00285 // Fixed number of digits (independent of the decimal point). 00286 PRECISION 00287 }; 00288 00289 // The maximal number of digits that are needed to emit a double in base 10. 00290 // A higher precision can be achieved by using more digits, but the shortest 00291 // accurate representation of any double will never use more digits than 00292 // kBase10MaximalLength. 00293 // Note that DoubleToAscii null-terminates its input. So the given buffer 00294 // should be at least kBase10MaximalLength + 1 characters long. 00295 static const int kBase10MaximalLength = 17; 00296 00297 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or 00298 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' 00299 // after it has been casted to a single-precision float. That is, in this 00300 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity. 00301 // 00302 // The result should be interpreted as buffer * 10^(point-length). 00303 // 00304 // The output depends on the given mode: 00305 // - SHORTEST: produce the least amount of digits for which the internal 00306 // identity requirement is still satisfied. If the digits are printed 00307 // (together with the correct exponent) then reading this number will give 00308 // 'v' again. The buffer will choose the representation that is closest to 00309 // 'v'. If there are two at the same distance, than the one farther away 00310 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 00311 // In this mode the 'requested_digits' parameter is ignored. 00312 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. 00313 // - FIXED: produces digits necessary to print a given number with 00314 // 'requested_digits' digits after the decimal point. The produced digits 00315 // might be too short in which case the caller has to fill the remainder 00316 // with '0's. 00317 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 00318 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 00319 // toFixed(0.15, 2) thus returns buffer="2", point=0. 00320 // The returned buffer may contain digits that would be truncated from the 00321 // shortest representation of the input. 00322 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 00323 // Even though the length of produced digits usually equals 00324 // 'requested_digits', the function is allowed to return fewer digits, in 00325 // which case the caller has to fill the missing digits with '0's. 00326 // Halfway cases are again rounded away from 0. 00327 // DoubleToAscii expects the given buffer to be big enough to hold all 00328 // digits and a terminating null-character. In SHORTEST-mode it expects a 00329 // buffer of at least kBase10MaximalLength + 1. In all other modes the 00330 // requested_digits parameter and the padding-zeroes limit the size of the 00331 // output. Don't forget the decimal point, the exponent character and the 00332 // terminating null-character when computing the maximal output size. 00333 // The given length is only used in debug mode to ensure the buffer is big 00334 // enough. 00335 static void DoubleToAscii(double v, 00336 DtoaMode mode, 00337 int requested_digits, 00338 char* buffer, 00339 int buffer_length, 00340 bool* sign, 00341 int* length, 00342 int* point); 00343 00344 private: 00345 // Implementation for ToShortest and ToShortestSingle. 00346 bool ToShortestIeeeNumber(double value, 00347 StringBuilder* result_builder, 00348 DtoaMode mode) const; 00349 00350 // If the value is a special value (NaN or Infinity) constructs the 00351 // corresponding string using the configured infinity/nan-symbol. 00352 // If either of them is NULL or the value is not special then the 00353 // function returns false. 00354 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 00355 // Constructs an exponential representation (i.e. 1.234e56). 00356 // The given exponent assumes a decimal point after the first decimal digit. 00357 void CreateExponentialRepresentation(const char* decimal_digits, 00358 int length, 00359 int exponent, 00360 StringBuilder* result_builder) const; 00361 // Creates a decimal representation (i.e 1234.5678). 00362 void CreateDecimalRepresentation(const char* decimal_digits, 00363 int length, 00364 int decimal_point, 00365 int digits_after_point, 00366 StringBuilder* result_builder) const; 00367 00368 const int flags_; 00369 const char* const infinity_symbol_; 00370 const char* const nan_symbol_; 00371 const char exponent_character_; 00372 const int decimal_in_shortest_low_; 00373 const int decimal_in_shortest_high_; 00374 const int max_leading_padding_zeroes_in_precision_mode_; 00375 const int max_trailing_padding_zeroes_in_precision_mode_; 00376 00377 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 00378 }; 00379 00380 00381 class StringToDoubleConverter { 00382 public: 00383 // Enumeration for allowing octals and ignoring junk when converting 00384 // strings to numbers. 00385 enum Flags { 00386 NO_FLAGS = 0, 00387 ALLOW_HEX = 1, 00388 ALLOW_OCTALS = 2, 00389 ALLOW_TRAILING_JUNK = 4, 00390 ALLOW_LEADING_SPACES = 8, 00391 ALLOW_TRAILING_SPACES = 16, 00392 ALLOW_SPACES_AFTER_SIGN = 32 00393 }; 00394 00395 // Flags should be a bit-or combination of the possible Flags-enum. 00396 // - NO_FLAGS: no special flags. 00397 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. 00398 // Ex: StringToDouble("0x1234") -> 4660.0 00399 // In StringToDouble("0x1234.56") the characters ".56" are trailing 00400 // junk. The result of the call is hence dependent on 00401 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 00402 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, 00403 // the string will not be parsed as "0" followed by junk. 00404 // 00405 // - ALLOW_OCTALS: recognizes the prefix "0" for octals: 00406 // If a sequence of octal digits starts with '0', then the number is 00407 // read as octal integer. Octal numbers may only be integers. 00408 // Ex: StringToDouble("01234") -> 668.0 00409 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal 00410 // // digits. 00411 // In StringToDouble("01234.56") the characters ".56" are trailing 00412 // junk. The result of the call is hence dependent on 00413 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 00414 // In StringToDouble("01234e56") the characters "e56" are trailing 00415 // junk, too. 00416 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of 00417 // a double literal. 00418 // - ALLOW_LEADING_SPACES: skip over leading spaces. 00419 // - ALLOW_TRAILING_SPACES: ignore trailing spaces. 00420 // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign. 00421 // Ex: StringToDouble("- 123.2") -> -123.2. 00422 // StringToDouble("+ 123.2") -> 123.2 00423 // 00424 // empty_string_value is returned when an empty string is given as input. 00425 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string 00426 // containing only spaces is converted to the 'empty_string_value', too. 00427 // 00428 // junk_string_value is returned when 00429 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not 00430 // part of a double-literal) is found. 00431 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a 00432 // double literal. 00433 // 00434 // infinity_symbol and nan_symbol are strings that are used to detect 00435 // inputs that represent infinity and NaN. They can be null, in which case 00436 // they are ignored. 00437 // The conversion routine first reads any possible signs. Then it compares the 00438 // following character of the input-string with the first character of 00439 // the infinity, and nan-symbol. If either matches, the function assumes, that 00440 // a match has been found, and expects the following input characters to match 00441 // the remaining characters of the special-value symbol. 00442 // This means that the following restrictions apply to special-value symbols: 00443 // - they must not start with signs ('+', or '-'), 00444 // - they must not have the same first character. 00445 // - they must not start with digits. 00446 // 00447 // Examples: 00448 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, 00449 // empty_string_value = 0.0, 00450 // junk_string_value = NaN, 00451 // infinity_symbol = "infinity", 00452 // nan_symbol = "nan": 00453 // StringToDouble("0x1234") -> 4660.0. 00454 // StringToDouble("0x1234K") -> 4660.0. 00455 // StringToDouble("") -> 0.0 // empty_string_value. 00456 // StringToDouble(" ") -> NaN // junk_string_value. 00457 // StringToDouble(" 1") -> NaN // junk_string_value. 00458 // StringToDouble("0x") -> NaN // junk_string_value. 00459 // StringToDouble("-123.45") -> -123.45. 00460 // StringToDouble("--123.45") -> NaN // junk_string_value. 00461 // StringToDouble("123e45") -> 123e45. 00462 // StringToDouble("123E45") -> 123e45. 00463 // StringToDouble("123e+45") -> 123e45. 00464 // StringToDouble("123E-45") -> 123e-45. 00465 // StringToDouble("123e") -> 123.0 // trailing junk ignored. 00466 // StringToDouble("123e-") -> 123.0 // trailing junk ignored. 00467 // StringToDouble("+NaN") -> NaN // NaN string literal. 00468 // StringToDouble("-infinity") -> -inf. // infinity literal. 00469 // StringToDouble("Infinity") -> NaN // junk_string_value. 00470 // 00471 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, 00472 // empty_string_value = 0.0, 00473 // junk_string_value = NaN, 00474 // infinity_symbol = NULL, 00475 // nan_symbol = NULL: 00476 // StringToDouble("0x1234") -> NaN // junk_string_value. 00477 // StringToDouble("01234") -> 668.0. 00478 // StringToDouble("") -> 0.0 // empty_string_value. 00479 // StringToDouble(" ") -> 0.0 // empty_string_value. 00480 // StringToDouble(" 1") -> 1.0 00481 // StringToDouble("0x") -> NaN // junk_string_value. 00482 // StringToDouble("0123e45") -> NaN // junk_string_value. 00483 // StringToDouble("01239E45") -> 1239e45. 00484 // StringToDouble("-infinity") -> NaN // junk_string_value. 00485 // StringToDouble("NaN") -> NaN // junk_string_value. 00486 StringToDoubleConverter(int flags, 00487 double empty_string_value, 00488 double junk_string_value, 00489 const char* infinity_symbol, 00490 const char* nan_symbol) 00491 : flags_(flags), 00492 empty_string_value_(empty_string_value), 00493 junk_string_value_(junk_string_value), 00494 infinity_symbol_(infinity_symbol), 00495 nan_symbol_(nan_symbol) { 00496 } 00497 00498 // Performs the conversion. 00499 // The output parameter 'processed_characters_count' is set to the number 00500 // of characters that have been processed to read the number. 00501 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included 00502 // in the 'processed_characters_count'. Trailing junk is never included. 00503 double StringToDouble(const char* buffer, 00504 int length, 00505 int* processed_characters_count) const { 00506 return StringToIeee(buffer, length, processed_characters_count, true); 00507 } 00508 00509 // Same as StringToDouble but reads a float. 00510 // Note that this is not equivalent to static_cast<float>(StringToDouble(...)) 00511 // due to potential double-rounding. 00512 float StringToFloat(const char* buffer, 00513 int length, 00514 int* processed_characters_count) const { 00515 return static_cast<float>(StringToIeee(buffer, length, 00516 processed_characters_count, false)); 00517 } 00518 00519 private: 00520 const int flags_; 00521 const double empty_string_value_; 00522 const double junk_string_value_; 00523 const char* const infinity_symbol_; 00524 const char* const nan_symbol_; 00525 00526 double StringToIeee(const char* buffer, 00527 int length, 00528 int* processed_characters_count, 00529 bool read_as_double) const; 00530 00531 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); 00532 }; 00533 00534 } // namespace double_conversion 00535 00536 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_