1. 1.Thanh Nguyen-Tang and Raman Arora. Learning in Markov Games with Adaptive Adversaries: Policy Regret, Fundamental Barriers, and Efficient Algorithms. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 2.Austin Watkins, Thanh Nguyen-Tang, Enayat Ullah and Raman Arora. Adversarially Robust Multi-task Representation Learning. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 3.Yunjuan Wang and Raman Arora. On the Stability and Generalization of Meta-Learning. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 4.Kaibo Zhang, Yunjuan Wang and Raman Arora. Stability and Generalization of Adversarial Training for Shallow Neural Networks with Smooth Activation. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 5.Enayat Ullah, Michael Menart, Raef Bassily, Cristobal Guzman and Raman Arora. Public-data Assisted Private Stochastic Optimization: Power and Limitations. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 6.Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup. Offline multitask representation learning for reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS), 2024 [pdf].


  1. 7.Yunjuan Wang, Kaibo Zhang and Raman Arora. Benign Overfitting in Adversarial Training of Neural Networks. International Conference on Machine Learning (ICML), 2024 [pdf].


  1. 8.Yunjuan Wang and Raman Arora. Adversarially Robust Hypothesis Transfer Learning. International Conference on Machine Learning (ICML), 2024 [pdf].


  1. 9.Thanh Nguyen-Tang and Raman Arora. On The Statistical Complexity of Offline Decision-Making. International Conference on Machine Learning (ICML), 2024 [pdf].


  1. 10.Michael Menart, Enayat Ullah, Raman Arora, Raef Bassily, Cristobal Guzman. Differentially Private Non-Convex Optimization under the KL Condition with Optimal Rates. International Conference on Algorithmic Learning Theory (ALT), 2024 [pdf].


  1. 11. Thanh Nguyen-Tang and Raman Arora. VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation. The Eleventh International Conference on Learning Representations (ICLR), 2023 [pdf].


  1. 12.Thanh Nguyen-Tang and Raman Arora. On Sample-Efficient Offline Reinforcement Learning: Data Diversity, Posterior Sampling and Beyond. Advances in Neural Information Processing Systems (NeurIPS), 2023 [pdf].


  1. 13.Austin Watkins, Thanh Nguyen-Tang, Enayat Ullah and Raman Arora. Optimistic Rates for Multi-Task Representation Learning. Advances in Neural Information Processing Systems (NeurIPS), 2023 [pdf].


  1. 14.Anh Do, Thanh Nguyen-Tang and Raman Arora. Multi-Agent Learning with Heterogeneous Linear Contextual Bandits. Advances in Neural Information Processing Systems (NeurIPS), 2023 [pdf].


  1. 15.Poorya Mianjy and Raman Arora. Robustness Guarantees for Adversarially Trained Neural Networks. Advances in Neural Information Processing Systems (NeurIPS), 2023 [pdf].


  1. 16.Raman Arora, Raef Bassily, Tomas Gonzalez, Cristobal Guzman, Michael Menart and Enayat Ullah. Faster Rates of Convergence to Stationary Points in Differentially Private Optimization. International Conference on Machine Learning (ICML), 2023 [pdf].


  1. 17.Enayat Ullah and Raman Arora. From Adaptive Query Release to Machine Unlearning. International Conference on Machine Learning (ICML), 2023 [pdf].


  1. 18. Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, Raman Arora. On instance-dependent bounds for offline reinforcement learning with linear function approximation. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2023 [pdf].


  1. 19. Jared Markowitz, Ryan Gardner, Ashley Llorens, Raman Arora, and I-Jeng Wang. A Risk-Sensitive Approach to Policy Optimization. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2023 [pdf].


  1. 20. Enayat Ullah, Raman Arora. Generalization bounds for Kernel Canonical Correlation Analysis. Transactions on Machine Learning Research (TMLR), 2023 [pdf].


  1. 21. Enayat Ullah, Harry Lang, Raman Arora, Vladimir Braverman. Clustering using Approximate Nearest Neighbour Oracles. Transactions on Machine Learning Research (TMLR), 2023 [pdf].


  1. 22. Yunjuan Wang, Enayat Ullah, Poorya Mianjy, and Raman Arora. Adversarial Robustness is at Odds with Lazy Training. Advances in Neural Information Processing Systems (NeurIPS), 2022 [pdf].


  1. 23. Raman Arora, Raef Bassily, Cristobal Guzman, Michael Menart, and Enayat Ullah. Differentially Private Generalized Linear Models Revisited. Advances in Neural Information Processing Systems (NeurIPS), 2022 [pdf].


  1. 24.Amir Alipour-Fanid, Monireh Dabaghchian, Raman Arora, and Kai Zeng. Multiuser Scheduling in Centralized Cognitive Radio Networks: A Multi-Armed Bandit Approach. IEEE Transactions on Cognitive Communications and Networking, 2022 [pdf].


  1. 25.Yunjuan Wang, Hussein Hazimeh, Natalia Ponomareva, Alexey Kurakin, Ibrahim Hammoud, Raman Arora. DART: A Principled Approach to Adversarially Robust Unsupervised Domain Adaptation. Preprint 2022 [pdf].


  1. 26.Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via algorithmic stability. In Proceedings of the 34th Conference on Learning Theory (COLT), 2021 [pdf].


  1. 27.Yunjuan Wang, Poorya Mianjy, Raman Arora. Robust learning for data poisoning attacks. In Proceedings of the 38th International Conference on Machine Learning (ICML), 2021 [pdf].


  1. 28.Raman Arora, Peter Bartlett, Poorya Mianjy, and Nathan Srebro. Dropout: Explicit Forms and Capacity Control. In Proceedings of the 38th International Conference on Machine Learning (ICML), 2021 [pdf].


  1. 29. Jalaj Upadhyay, Sarvagya Upadhyay, and Raman Arora. Differentially private analysis on graph streams. In Proceedings of the 24th International conference on Artificial Intelligence and Statistics (AISTATS), 2021 [pdf].


  1. 30.Raman Arora, Teodor V Marinov, and Mehryar Mohri. Corralling stochastic bandit algorithms. In Proceedings of the 24th International conference on Artificial Intelligence and Statistics (AISTATS), 2021 [pdf].


  1. 31.Raman Arora, Teodor V Marinov, and Enayat Ullah. Private Stochastic Convex Optimization: Efficient Algorithms for Non-smooth Objectives. Preprint, 2020 [pdf].


  1. 32.Poorya Mianjy and Raman Arora. On Convergence and Generalization of Dropout Training. Advances in Neural Information Processing Systems (NeurIPS), 2020 [pdf].


  1. 33.Jeremias Sulam, Ramchandran Muthukumar, and Raman Arora. Adversarial Robustness of Supervised Sparse Coding. Advances in Neural Information Processing Systems (NeurIPS), 2020 [pdf].


  1. 34.Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated learning with sketching. In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020 [pdf].


  1. 35.Xingguo Li, Haoming Jiang, Jarvis Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao. On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don’t Worry About its Nonsmooth Loss Function. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence (UAI), 2020 [pdf].


  1. 36.Lucia Specia, Raman Arora, Loic Barrault, Ozan Caglayan, Amanda Duarte, et al. Grounded Sequence to Sequence Transduction. IEEE Journal of Selected Topics in Signal Processing (IEEE JSTSP), 2020 [pdf].


  1. 37.Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin. Is Network the Bottleneck of Distributed Training? In Proceedings of the Workshop on Network Meets AI & ML (SIGCOMM NetAI), 2020 [pdf].


  1. 38.Raman Arora and Teodor Vanislavov Marinov. Efficient Convex Relaxations for Streaming PCA. Advances in Neural Information Processing Systems (NeurIPS), 2019 [pdf].


  1. 39.Raman Arora, Teodor Vanislavov Marinov, and Mehryar Mohri. Bandits with Feedback Graphs and Switching Costs. Advances in Neural Information Processing Systems (NeurIPS), 2019 [pdf].


  1. 40.Raman Arora and Jalaj Upadhyay. On Differentially Private Graph Sparsification and Applications. Advances in Neural Information Processing Systems (NeurIPS), 2019 [pdf].


  1. 41.Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman Arora. Communication-efficient Distributed SGD with Sketching. Advances in Neural Information Processing Systems (NeurIPS), 2019 [pdf].


  1. 42.Poorya Mianjy and Raman Arora. On Dropout and Nuclear Norm Regularization. In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019 [pdf].


  1. 43.Xingguo Li, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, Zhaoran Wang, and Tuo Zhao. Symmetry, Saddle Points, and Global Geometry of Nonconvex Matrix Factorization. IEEE Transactions on Information Theory (IEEE TIT), 2019 [pdf].


  1. 44.Chris Paxton, Yotam Barnoy, Kapil Katyal, Raman Arora, and Gregory D Hager. Visual Robot Task Planning. In Proceedings of the International Conference on Robotics and Automation (ICRA), 2019 [pdf].


  1. 45.Adrian Benton, Huda Khayrallah, Biman Gujral, Drew Reisinger, Sheng Zhang, and Raman Arora. Deep Generalized Canonical Correlation Analysis. In Proceedings of the Workshop on Representation Learning for NLP (ACL Rep4NLP), 2019 [pdf].


  1. 46.Nils Holzenberger, Shruti Palaskar, Pranava Madhyastha, Florian Metze, and Raman Arora. Learning from Multiview Correlations in Open-domain Videos. In Proceedings of the 43rd International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019 [pdf].


  1. 47.Raman Arora, Michael Dinitz, Teodor V. Marinov, and Mehryar Mohri. Policy Regret in Repeated Games. Advances in Neural Information Processing Systems (NeurIPS), 2018 [pdf].


  1. 48.Raman Arora, Vladimir Braverman, and Jalaj Upadhyay. Differentially Private Robust Low-Rank Approximation. Advances in Neural Information Processing Systems (NeurIPS), 2018 [pdf].


  1. 49.Enayat M. Ullah, Poorya Mianjy, Teodor V. Marinov, and Raman Arora. Streaming Kernel PCA with $\tilde{O}(\sqrt{n})$ Random Features. Advances in Neural Information Processing Systems (NeurIPS), 2018 [pdf].


  1. 50.Lin F. Yang, Raman Arora, Vladimir Braverman, and Tuo Zhao. The Physical Systems Behind Optimization Algorithms. Advances in Neural Information Processing Systems (NeurIPS), 2018 [pdf].


  1. 51.Poorya Mianjy, Raman Arora and Rene Vidal. On the Implicit Bias of Dropout. In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 [pdf].


  1. 52.Poorya Mianjy and Raman Arora. Stochastic PCA with l1 and l2 regularization. In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 [pdf].


  1. 53.Teodor V. Marinov, Poorya Mianjy, and Raman Arora. Streaming PCA in noisy settings. In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 [pdf].


  1. 54.Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding Deep Neural Networks with Rectified Linear Units. In Proceedings of the Sixth International Conference on Learning Representations (ICLR), 2018 [pdf].


  1. 55.Raman Arora, Teodor Marinov and Poorya Mianjy. Stochastic approximation for canonical correlation analysis. Advances in Neural Information Processing Systems (NIPS) 2017 [pdf].


  1. 56.Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong. On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. Journal of Machine Learning Research (JMLR), 2017 [pdf].


  1. 57.Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao. Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction. arXiv:1605.02711, 2016 [pdf].


  1. 58.Peter Schulam and Raman Arora. Disease Trajectory Maps. Advances in Neural Information Processing Systems (NIPS), 2016 [pdf].


  1. 59.Raman Arora, Poorya Mianjy and Teodor Marinov. Stochastic optimization for multiview learning using partial least squares. In Proceedings of the 32nd International Conference on Machine Learning (ICML), 2016 [pdf].


  1. 60.Xingguo Li, Tuo Zhao, Raman Arora, Han Liu and Jarvis Haupt. Stochastic variance reduced optimization for nonconvex sparse learning. In Proceedings of the 32nd International Conference on Machine Learning (ICML), 2016 [pdf] [supp].


  1. 61.Adrian Benton, Raman Arora and Mark Dredze. Learning Multiview Embeddings of Twitter Users. In Proceedings of the Association for Computational Linguistics (ACL), 2016 [pdf].


  1. 62.Mo Yu, Mark Dredze, Raman Arora and Matthew R. Gormley. Embedding lexical features via low-rank tensors. In Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL), 2016 [pdf].


  1. 63.Weiran Wang, Raman Arora, Karen Livescu and Jeff Bilmes. On Deep Multi-View Representation Learning: Objectives and Optimization. arXiv, 2016 [pdf].


  1. 64.Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, and Mingyi Hong. An improved convergence analysis of cyclic block coordinate descent-type methods for strongly convex minimization. In Proceedings of the 19th International conference on Artificial Intelligence and Statistics (AISTATS), 2016 [pdf] [supp].


  1. 65.Weiran Wang, Raman Arora, Karen Livescu and Nathan Srebro. Stochastic optimization for deep CCA via nonlinear orthogonal iterations. In Proceedings of the 53rd Annual Allerton Conference on Communication, Control and Computing (ALLERTON), 2015 [pdf].


  1. 66.Weiran Wang, Raman Arora, Karen Livescu and Jeff Bilmes. On Deep Multi-View Representation Learning. In Proceedings of the 32nd International Conference on Machine Learning (ICML), 2015 [pdf].


  1. 67.Pushpendre Rastogi, Benjamin Van Durme and Raman Arora. Multiview LSA: Representation Learning via Generalized CCA. In Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL), 2015 [pdf].


  1. 68.Weiran Wang, Raman Arora, Karen Livescu and Jeff Bilmes. Unsupervised learning of acoustic features via deep canonical correlation analysis. In Proceedings of the 39th International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015 [pdf].


  1. 69.Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. Accelerated mini-batch randomized block coordinate descent method. Advances in Neural Information Processing Systems (NIPS) 2014 [pdf].


  1. 70.Weiran Wang, Raman Arora and Karen Livescu. Reconstruction of articulatory measurements with smoothed low-rank matrix completion. Spoken Language Technology (SLT) Workshop, 2014 [pdf].


  1. 71.John Goes, Teng Zhang, Raman Arora and Gilad Lerman. Robust Stochastic Principal Component Analysis. In Proceedings of the 17th International conference on Artificial Intelligence and Statistics (AISTATS), 2014 [pdf].


  1. 72.Raman Arora and Karen Livescu. Multi-view learning with supervision for transformed bottleneck features. In Proceedings of the 38th International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014 [pdf].


  1. 73.Raman Arora, Andy Cotter and Nati Srebro. Stochastic Optimization of PCA with Capped MSG. Advances in Neural Information Processing Systems (NIPS), 2013  [pdf].


  1. 74.Galen Andrew, Raman Arora, Jeff Bilmes and Karen Livescu. Deep Canonical Correlation Analysis. In Proceedings of the 30th International Conference on Machine Learning (ICML), 2013 [pdf].


  1. 75.Raman Arora, Maya R. Gupta, Amol Kapila and Maryam Fazel. Similarity-based clustering by Left-Stochastic Matrix Factorization. Journal of Machine Learning Research (JMLR) 14.1, 2013: 1715-1746 [pdf].


  1. 76.Raman Arora and Marina Meila. Consensus ranking with signed permutations. In Proceedings of the 16th International conference on Artificial Intelligence and Statistics (AISTATS), 2013 [pdf].


  1. 77.Raman Arora and Karen Livescu. Multi-view CCA-based acoustic features for phonetic recognition across speakers and domains. In Proceedings of the 38th International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 [pdf].


  1. 78.Raman Arora, Ofer Dekel and Ambuj Tewari. Deterministic MDPs with adversarial rewards and bandit feedback. In Proceedings of the 28th Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2012 [pdf].


  1. 79.Raman Arora, Ofer Dekel and Ambuj Tewari. Online bandit learning against an adaptive adversary: from regret to policy regret. In Proceedings of the 29th International Conference on Machine Learning (ICML), 2012 [pdf].


  1. 80.Raman Arora, Andy Cotter, Karen Livescu and Nati Srebro. Stochastic Optimization for PCA and PLS. In Proceedings of the 50th Annual Allerton Conference on Communication, Control and Computing (ALLERTON), 2012 [pdf].


  1. 81.Raman Arora and Karen Livescu. Kernel CCA for multi-view acoustic feature learning using articulatory measurements. In Proceedings of the Machine Learning Symposium on Language and Speech Processing (MLSLP), 2012 [pdf].


  1. 82.Eric K. Garcia, Raman Arora and Maya R. Gupta. Lattice regression for fast function evaluation with application to super-resolution and visual homing. In IEEE Transactions on Image Processing (IEEE TIP), 2012 [pdf].


  1. 83.Raman Arora, Maya R. Gupta, Amol Kapila and Maryam Fazel. Clustering by Left-Stochastic Matrix Factorization. In Proceedings of the 28th International Conference on Machine Learning (ICML), 2011 [pdf].


  1. 84.Raman Arora and William A. Sethares. An efficient and stable algorithm for learning rotations. In International conference on Pattern Recognition (ICPR), Istanbul, Turkey, Aug 2010 [pdf].


  1. 85.Raman Arora and Harish Parthasarathy. Optimal estimation and detection in homogeneous spaces. In IEEE Transactions on Signal Processing (IEEE TSP), Volume 58, Issue 5, May 2010, Pages: 2623-2635 [pdf].


  1. 86.Raman Arora, William A. Sethares and James Bucklew. Latent periodicities in genome sequences. In IEEE Journal of Selected Topics in Signal Processing (IEEE JSTSP): Genomic and Proteomic Sig. Proc., Vol 2, Issue 3, Jun 2008, Pages: 332-342 [pdf].


  1. 87.Raman Arora and William A. Sethares. Adaptive wavetable oscillators. In IEEE Transactions on Signal Processing (IEEE TSP), Volume 55, Issue 9, 4382-4392, Sep 2007 [pdf].


Selected papers (reverse chronological order)