
A Visual
Expedition
Inside the

Linux
File Systems

Răzvan Musăloiu-E.

1

1. Introduction

I photograph to see what the world looks like in photographs.
—Garry Winogrand (1928–1984)

Despite being a very important part of any operating system, file
systems tend to get little attention. Linux has three editions for Linux
Device Drivers, another three for Understanding the Linux Kernel
and two for Linux Kernel Development. For the 2.4 networking stack
there is Linux Networking Architecture by Klaus Wehrle et al. and for
the memory subsystem there is Understanding the Linux Virtual
Memory Manager by Mel Gorman. The aptly named UNIX
Filesystems: Evolution, Design, and Implementation is only giving a
general overview of how things work. Practical File System Design
with the Be File System by Dominic Giampaolo is an an enjoyable
read but, as the name indicates, it only deals with BeFS. The same is
also true for HFS+ in the very thick but also very interested Mac OS X
Internals: A Systems Approach by Amit Singh. I really hope that
someday somebody will spend some time and put together a nice book
or website in which file systems, new and old, are presented and
analyzed in detail.

As the disclaimer from the front page says, I don't know as much as I
want about file systems. I'm making progress in learning about them
in the traditional way of playing and understanding the existing code.
What I'm attempting in this project is to complement this by a visual
approach in which the main purpose is to try to graphically depict
some the ways the things go. The main observable thing I'm using is
the external symbols used by kernel modules. There are two main
reasons for doing this. First, many operating systems build their file
systems as kernel modules. This is useful because it separates the
part we are interested in from the rest of kernel. And second, because
the modules need to be loaded dynamically, the functions they call and
data they access from the kernel show up as external (unresolved)
symbols in their binaries. These can be easily extracted using nm. One
drawback of this approach is represented by the chains of calls like
the ones in the figure from below. Luckily, in the Linux kernel many
functions are explicitly marked as inline so this case might not occur
so frequently. I haven't check explicitly for this yet to but it is
something I would like to do.

That being said, here is a quick overview of the next sections. The
following two are the big ones. The first is a detail analysis of one
particular Linux Kernel tree and the second is a shorter one done over
a large number of file systems from Linux Kernel 2.6.0 to 2.6.29. After
that there is a small section that shows some aspects of the BSD
family. After conclusions there is an appendix consisting of three
things: the first one explains how the file systems for Linux were
compiled, the second one shows timelines for the releases of Linux
Kernel, FreeBSD, NetBSD and OpenBSD; the last is a detailed map of
the external symbols of the kernel modules analyzed in the second
section.

On more thing. The figures are accompanied by captions which
describe the plot and note some of the interesting things that are
going on there. If you find any mistake please let me know and I'll try
to fix it.

Happy reading/viewing!

Chain of calls problem.
Module 1 and Module 2 are
two kernel modules and f1
and f2 are two functions
exported by the kernel. Even
f1 are two f2 different calls
they are in fact closely
related to each other. This is
not captured by the relations
between the modules and the
kernel and can only be
detected by also looking the
way things happen inside the
kernel.

2

2. Linux Kernel 2.6.29 + tux3

In this section we are going to explore a certain version of
the Linux Kernel, the tux3 branch from March 14, 2009.
This version contains the Linux tree up to March 10. The
2.6.29 was released on March 23 so this is not exactly the
final version. I picked it because it contains btrfs and, at
the time of writing this report, it is the latest one that
was published by Daniel Phillips, the creator of the tux3.

The rest of this section is made up exclusively of figures
accompanied by extensive captions.

3

Map of the external symbols. This plot shows the external symbols for 55
kernel modules from the tux3 git repository. Each tick represents an
external symbol. The file systems are show in alphabetical order. The big
compact chunks of external symbols related to jbd and jbd2 are visible for
ext3 and ext4. The fact that ocfs2 is also making use of jbd2 is also
noticeable. Later in this section we will see how this representation looks
when is reorganized based on similarities between file systems.

2. Linux Kernel 2.6.29 + tux3

4

Number of external symbols. This plot shows the ranking of the file systems
based on the number of external symbols. We can see that the range is about
300 symbols and there are no sudden jumps: some sizes are more popular
than others but overall the space is filled quite smoothly.

2. Linux Kernel 2.6.29 + tux3

5

Number of external symbols by categories. This is the same plot as the
previous one except this time the file systems are grouped in categories.

The first group, which contains the disk-based file systems, is led by ext4
which is ahead of xfs by 45 external symbols. Note that the number of
external symbols for both ext4 and ext3 is boosted by the fact the journaling
part not implemented internally but provided by jbd2 and jbd respectively.
At the other end of the scale is a group of 4 file systems out of which only
two, freevxfs and qnx4 are truly self-contained. The other two, msdos and
vfat are getting most of their functionality from the fat module which is more
than twice of their size.

The second group contains the file systems dedicated to optical mediums and
it holds no surprises: udf is ahead of isofs by a comfortable margin.

The same thing is also true for the the third group, of the flash-based file
systems, where the first place is taken by ubifs followed by jffs2. The third
placed is secured by squashfs while the bottom is shared by cramfs and
romfs which are separated by only 5 symbols.

The fourth group is the one dedicated to the network file systems. Here the
first two spots are taken by nfs and nfsd, which provide kernel support for
NFS client and NFS server. On the next two places, at very close distance
between them, are kafs, the Andrew File System, and cifs. The end is shared
by coda and 9p.

The fifth group contains, in this order, the only two cluster-based file
systems: ocfs2 and gfs2. The number of external symbols for ocfs2 is
increased due to the use of the jbd2 journaling library.

The sixth group, the one dedicated to memory-based file systems is
dominated authoritatively by proc which has almost 100 more external
symbols than fuse, the file system from the second place. As expected, at the
bottom sits ramfs.

The seventh and last group is dedicated to ancient file systems. The first
place is shared by hfs and ufs. Quite surprising, this is only one of the three
ties in this group, the other two being hpfs/minix and adfs/bfs.

2. Linux Kernel 2.6.29 + tux3

6

The 50 most popular external symbols. The symbols are sorted in the
descending order of their frequency while the file systems are sorted in the
descending order of number of external symbols they use.

The first two symbols are used by the function tracer. On the third place we
have a tie between kfree, which is used by everybody except by ramfs, msdos
and romfs, and kprintf which, surprising, is avoided by vfat, ramfs and
msdos.

As expected, the kmem operations are among the most popular one. So are
the some basic operations like strlen, memcmp and strsep.

Another thing we can notice are some (expected) pairs of calls that are
always used together: register_filesystem/unregister_filesystem,
_spin_lock/_spin_unlock and kmap/kunmap.

Another (again expected) observation is that the lack of
(un)register_filesystem identifiers in the modules which only provides
services to others: dlm, lockd, fat, and jbd2/jbd2.

2. Linux Kernel 2.6.29 + tux3

7

Heatmap of the Hamming distances. If we think of each file systems as a
string of bits with one indicating the presence of a certain external symbol
and zero as the absence of it then the Hamming distance is the minimum
number of substitutions necessary to change one string into another. The
heatmap is symmetric. The red indicates a Hamming distance of zero, which
corresponds to maximum similarity, and yellow indicates very little
similarity. Everyone is similar with itself so the diagonal is red. In this plot
the file systems are sorted in ascending order of their number of external
symbols. What we are going to do next is to reorder the rows and columns in
a way that brings closer the file systems that are similar.

2. Linux Kernel 2.6.29 + tux3

8

Hierarchical clustering. As the name
implies, hierarchical clustering builds
a hierarchy of clusters. There are two
ways to do this: one is to start from
bottom, with all the data points as
clusters and then, at each step, merge
two of them. This is also know as
agglomerative nesting. The other one
is called divisive and starts from top,
with everything in a big cluster, and
at each steps performs a split.

At the right is an example of
clustering 11 points situated in a 2D
plane. Left is a dendrogram, a tree
diagram usually used to represent the
result of a hierarchical clustering.
Right is a a representation using
nested clusters.

Single linkage. When all the clusters
only contains one point we can easily
define the distance between them as
the distance (d) between the
respective points. After each merge
operation we need a way to define the
distance (D) between this new cluster
and all the old ones. One way to do
this is to consider the distance
between two clusters as the minimum
distance between any pair of nodes
with one node in a cluster and
another one in the other. Formally we
could express this as D(A,B) = {
min(d(x,y)) | x in A and y in B }.

This method is best suited for
constructing elongated clusters like
the ones int he right.

2. Linux Kernel 2.6.29 + tux3

9

Complete linkage. In this case the
distance between clusters is defined
as the maximum distance between
the pairs of nodes which contain one
node from one cluster and one from
the other. Similar with the previous
case, this could be express as D(A,B)
= { max(d(x,y)) | x in A and y in B }.
This method is capable of creating
small and compact clusters.

Group average. We can also define
the distance between two clusters in
such a way that all the pairwise
distances contribute to the result. If
we take the average of all the pairs
then the method is called group
average.

Ward's method. This method works
like this: for each cluster we compute
the sum of squared deviations from
the cluster's centroid. Then we sum
up all these sums and get a total error
sum. At each step we merge the two
clusters which minimize the increase
of total error sum.

McQuitty's method. In this method,
after each merge, the distance
between the new cluster and the old
ones are computed based on the
distances of the two clusters that
were merged. In the example below,
two clusters, A and B, were merge
and formed a new cluster E. The
distance D3 between E and another
cluster C is defined to be D3=
(size(A)×D1 + size(B)×D2)/(size(A) +
size(B)). This method is also call
WPGMA (Weighted Pair Group
Method with Arithmetic Mean).

2. Linux Kernel 2.6.29 + tux3

10

Clustering using the Hamming
distance and Ward's method. Let's
now take a look at how the heatmap
of the Hamming distances we
introduced earlier looks like when we
reorder it using Ward's algorithm.
The most noticeable thing is the
distinctive division of the map the due
to nfs/proc and nfsd. Many things are
clustered in expected ways: the
ext2/ext3/ext4 family (lower left
corner), the coda/smbfs/ncpfs network
file systems, the jbd/jbd2 journaling
services.

Dendrogram of the clustering using
Hamming distance and Ward's
method. If we look only at the
dendrogram we can notice that this
method divided the file systems in
two big parts: complex disk-based
systems including cluster file systems
(which contain a disk-based part
inside them), and everything else. We
can also observe that most of the
ancient file system category is
contained almost completely in one
big branch (fat–minix). Some unusual
matches: 9p is situated quite far from
the rest of the network file systems
and tux3 ends up keeping company to
the group of ancient file systems. In
contrast, btrfs enjoys the
neighborhood of xfs and gfs2 in the
upper class of complex file systems.

2. Linux Kernel 2.6.29 + tux3

11

Clustering using the Hamming
distance and complete linkage.
Unlike the previous method, the
rearrangement using the clustering
based on furthest neighbor strategy
(also known as complete linkage)
creates a heatmap with a nicely
defined center. The kernel is formed
by a group of ancient file system and
a few memory-based file systems. In
the lower left we can also notice a
close-knit group formed by
ext2/ext3/ext4, ocfs2 and reiserfs. As
before, a few classic modules, jbd/jbd2
 and coda/smbfs/ncpfs, are again
together.

Dendrogram of the clustering using
the Hamming distance and complete
linkage. Here we can see that the big
nice split from Ward's method is
replaced by a more scatter division.
The complex disk-based file systems
are now split in two parts, ocfs2–ext3
 and xfs–ubifs, the second of them
being muddle by two flash-based file
systems (jffs2 and ubifs). btrfs is
again next to gfs2 and close to xfs
but, surprise, also next to ntfs. Like
before, tux3 is close to a bunch of
ancient file systems. isofs, squashfs
 and cramfs, two read-only file
systems are together from the start
this time with romfs, the only other
read-only file system, keeping a
decent distance from them.

2. Linux Kernel 2.6.29 + tux3

12

Clustering using the Hamming
distance and group average. The
group average method, usually used
to identify bell-shaped clusters,
generates a heatmap with a
prominent off-center kernel. As in the
previous case, this is made up of
mostly by ancient file systems. Easily
noticeable groups are again formed by
the ext2/ext3/ext4, jbd/jbd2 and
coda/smbfs/ncpfs.

Dendrogram of the clustering using
the Hamming distance and group
average. In this representation, the
skew is also very visible. From a high-
level perspective, we have a big
cluster jbd–ubifs and a few small ones
(ext4–ext3, gfs2–reiserfs and
cifs–kafs) which are merged in the
final merging steps with some file
systems (nfs, btrfs, dlm, etc). The
intuition behind this is that, as the
file systems use more and more
external symbols, they become more
loosely connected.

2. Linux Kernel 2.6.29 + tux3

13

Clustering using the Hamming
distance and McQuitty's method. The
heatmap in this case is somehow
similar with the one from complete
linkage.

Dendrogram of the clustering using
the Hamming distance and
McQuitty's method. If we ignore the
skew induced by proc/nfsd/nfs and the
fact that the complex disk-based file
systems (xfs–reiserfs and ocfs2–ext3)
are not sharing the same level, then
the resulting tree is nicely split in
similar things.

2. Linux Kernel 2.6.29 + tux3

14

Following are a set of
dendrograms using
Canberra distance. In our
case, this metric is
equivalent with the
number of different
external symbols between
two modules. After each
dendrogram a reordered
map of symbols is also
plotted.

Clustering using the Canberra distance and Ward's method.

2. Linux Kernel 2.6.29 + tux3

15

Clustering using the Canberra distance and complete linkage.

2. Linux Kernel 2.6.29 + tux3

16

Clustering using the Canberra distance and group average.

2. Linux Kernel 2.6.29 + tux3

17

Clustering using Canberra distance and McQuitty's method.

2. Linux Kernel 2.6.29 + tux3

18

Clustering using Canberra distance and single linkage.

2. Linux Kernel 2.6.29 + tux3

19

Phylogentic tree. Pars is a program
that can construct an evolutionary
tree which requires a minimum
number of changes (maximum
parsimony). The program is part of
PHYLIP, a computational
phylogenetics package created and
maintained by Joseph Felsenstein.

The input to Pars is number of
species, each described using a string
of characters. Usually each character
is either "0" or "1" indicating the
presence of absences of a certain
feature but Pars also capable of
dealing with up to 8 states plus "?"
which indicates an unknown state. In
our case we only need "0" and "1" and
each position in the string encodes a
certain external call.

The result is the tree from upper
right. It looks like a dendrogram but
it is slightly different. This time the
length of any vertical line is
proportional with the number of
changes between two states. We can
see for example that msdos and vfat
are both very close to the their parent
while ext4 and ext3 are much farther
apart.

Circular
representations
of the phylogentic
tree. This are
three alternative
representations of
the same tree. The
size of the text is
proportional with
the depth.

2. Linux Kernel 2.6.29 + tux3

20

Circos. Circos is a visualization tool by Martin Krzywinski. The initial purpose was to provide a better
representation of various genomic data but the program was successfully used to produce very nice graphical
representations of other type of data.

Let's now look at our plot. On the outer edge we have the file systems split in categories (from top to bottom: disk-
based, optical mediums, flash-based, network-based, cluster-based, memory-based, ancient). The size is
proportional with the number of external symbols. Colors indicate the type of external symbols. The green
represents functions, red is data, orange are read-only data, and light yellow is uninitialized data (BSS). To give a
sense of proportions, the external symbols exported by the Linux Kernel, vmlinux, are also depicted. It was
compiled in the same configuration as the rest of the file systems. To give some numbers: it exports a total of 9310
external symbols out of which 8047 are functions, 621 are writable variables, 159 are read-only and 483 are BSS
data. The gray area from file systems indicates the external symbols which are not satisfied by the kernel but by
some other kernel module. This is noticeable for nfs, nfsd and also the users of jbd/jbd2: ext3, ext4, ocfs2.

2. Linux Kernel 2.6.29 + tux3

21

On the inner edge of vmlinux there is a plot that indicates the frequency which which each exported symbol is used
by the file systems from right. One thing we noticed here is that variables are used pretty much with the same
frequency as the functions.

The set of boxes from the inner edge of the file systems represents the percentage of the external symbols which are
unique to each file system. We can see that virtually all the external symbols used by proc are only used by it. But
having unique external symbols is not a rare feature: with the exception of ancient file systems all the other
categories have members with various degree of "uniqueness".

The red arcs from inside depict the use-provide relationships between the file systems. As expected, the memory-
based modules are the ones that are the main providers with proc and debufgs being the most popular one. We can
also see that lockd is used by nfs and nfsd and also the relation between fat and vfat/msdos. A notable thing: there
is no link between dlm and ocfs2/gfs2 because only the main kernel module was considered.

Treemap. A treemap is a visual representation of hierarchies using nested
rectangles. The first version was introduced by Ben Shneiderman in 1990 in
the context of visualization of directories structures. In our representation
the size of the rectangle for each file systems is proportional with the
number of external symbols used by it. The symbols exported by vmlinux are
also depicted. The thicker lines indicate the boundaries of the seven
categories we introduced earlier.

2. Linux Kernel 2.6.29 + tux3

22

3. Linux Kernel 2.6.x

In this section we are going to look at the relations between 1377 file systems compiled from
Linux Kernel 2.6.0–2.6.29. More details about how I compiled them can be found in Appendix A.
Note that this time the final 2.6.29 is used. This means that tux3 is missing.

Like the previous one, this section is also a sequence of commented figures.

Number of external symbols over
time. In order to avoid clutter,
this graph is split in 6 parts. The
split was done based on how
many external symbols file
systems gain over the whole span
of their life. The first plot contains
a big group of 35 file systems that
shows only very little changes.
Beside btrfs and ubifs, which
stands out due to their big
number of external symbols, the
other 33 are the following: adfs,
affs, befs, bfs, coda, configfs,
cramfs, debugfs, devfs, efs,
freevxfs, hfs, hfsplus, hpfs,
hugetlbfs, intermezzo, isofs, jbd,
jffs, lockd, minix, msdos, ncpfs,
omfs, qnx4, ramfs, romfs, smbfs,
squashfs, sysv, udf, ufs, vfat.

Another close race is going on now
between nfsd and ext2. They also
start at a distance of 2 symbols
and the distance keep growing
ending up at 55 symbols in 2.6.29.

Only two notable things here: the
race between ntfs and jffs2 which
start with a microscopic distance
of only 2 symbols in 2.6.0, go
apart to a distance of 43 symbols
in 2.6.17 and end up with a
distance of 24 in 2.6.29, and the
sudden sink of devpts in 2.6.4
which is followed by a a similar
increase in 2.6.13.

23

Yet another interesting race is
featuring this time proc and
reiserfs. proc starts with an
advantage of 9 symbols but
reiserfs is taking the lead in 2.6.7
and surrenders in 2.6.24. By
2.6.29 the distance gets to 25
symbols.

The only remarkable thing is the
impressive jump of 62 symbols
kafs, the Andrew File System, is
making in 2.6.22. As we'll see a
little later, this will earn him the
second place in the top of biggest
jumps.

In here we have 9p the absolute
winner of the biggest increase (74
symbols in 2.6.27) and also the
biggest decrease (25 symbols in
2.6.23). The 54 symbols gained by
osfs2 in 2.6.29 put him in the
third place in the biggest increase
contest. Another winner is nfs
which holds the absolute record
for the biggest difference between
the minimum and maximum
number of external symbols.

3. Linux Kernel 2.6.x

24

Boxplots of the external symbols for each release. In
order to avoid cluttering, in this plot the lines that are
shown in the previous ones are omitted. The boxes
indicate the interval which contains 50% of the file
systems for that particular release. The thick horizontal
line inside the box indicates the median. We can see that
the median goes up and so does the spread of the two
middle quartiles and the extremities.

Ranking based on longevity. This
is the first out of seven rankings
and it shows in how many
releases each of the 65 file
systems shows up. What is easily
noticeable is that most of the file
systems, 38 of them, are veterans
and are present in all the 2.6.x
releases. Note that there are only
four disk-based systems that are
no veterans: a very young one,
btrfs which shows up only in one
release; a junior one, ext4 which
accumulated so far 11 releases
and two old seniors, hfsplus and
jfs which missed the big group of
veterans by only four and one
releases, respectively.

3. Linux Kernel 2.6.x

25

Ranking based on the minimum
and maximum number of
symbols. The following two
graphs shows the file systems
sorted by the minimum and
maximum number of symbols
they had over their life in 2.6.x.
The unbelievable number of
external symbols of only one was
achieved by devpts in three
consecutive releases (from 2.6.10
to 2.6.12). Also hard to believe is
the number of 4 external symbols
scored by 9p in 2.6.14 and 2.6.15.
I haven't actually tested these
modules so they might be broken
and/or incomplete.

Rankings based on range ot the
number of symbols. This plot
shows the ranking based on
range, the difference between the
maximum and minimum number
of symbols a file system had
reached in its lifetime. As we
pointed before, the absolute
winner is nfs. Two of the file
system at the other end, btrfs and
squashfs might not hold their
position for long considering that
both only have one one presence
in 2.6.x.

3. Linux Kernel 2.6.x

26

Ranking based on the difference in
number of symbols between first
and last appearance. This plot is very
similar with the previous one. One
interesting thing is that freevxfs, a
veteran which didn't skip any 2.6
release, ends up in 2.6.29 with two
less symbols than in 2.6.0.

Ranking based on the biggest
increase and decrease. Beside the
first places which were already
mentioned what can be said about
this is that, despite the fact that most
of the file systems don't have big
increases of the number of external
symbols from one release to another,
they decrease much less than they
increase. The behavior of ubifs, which
never decreases, can be excused by
the fact that he has only 3 presences
in the 2.6.x.

3. Linux Kernel 2.6.x

27

Relations between the rankings. This plot summarizes the previous seven
ones. The gray lines are used when the rank changed more than 10
positions.

3. Linux Kernel 2.6.x

28

Heatmap of the clustering using Hamming distance and Ward's method.
This is the first out of four animations that shows how the heatmap of the
Hamming distance evolves over time. To aid the comparison, the file systems
shown are only the one that are still present in 2.6.29. Their position is keep
fixed and is determined by the clustering done on the distances from 2.6.29.
The Hamming distance is computed separately for each release. Red
indicates high similarity and yellow indicates the opposite. One notable
thing in all the four animations is that similarity is decreasing over time.

3. Linux Kernel 2.6.x

29

Heatmap of the clustering using Hamming distance and complete linkage.

3. Linux Kernel 2.6.x

30

Heatmap of the clustering using Hamming distance and group average.

3. Linux Kernel 2.6.x

31

Heatmap of the clustering using Hamming distance and McQuitty's method.

3. Linux Kernel 2.6.x

32

Circular dendrogram of the clustering using Hamming distance and Ward's method. This is the first out of four
circular dendrograms that shows the result of clustering using the Hamming distance over all the file systems. The
ticks that make up the inner ring encode file systems while the outside ones encode the version number. A high
resolution image with text annotation is available upon click.

3. Linux Kernel 2.6.x

33

Circular dendrogram of the clustering using Hamming distance and complete linkage.

3. Linux Kernel 2.6.x

34

Circular dendrogram of the clustering using Hamming distance and group average.

3. Linux Kernel 2.6.x

35

Circular dendrogram of the clustering using Hamming distance and McQuitty's method.

3. Linux Kernel 2.6.x

36

Circular dendrogram of the clustering using Hamming distance and McQuitty's method.

3. Linux Kernel 2.6.x

37

Circular dendrogram of the clustering using Canberra distance and Ward's method. This is the first out of five
circular dendrograms that shows the result of clustering using the Canberra distance over all the file systems. As
we mentioned before, in our case, this metric is equivalent with the number of different external symbols.

3. Linux Kernel 2.6.x

38

Circular dendrogram of the clustering using Canberra distance and complete linkage.

3. Linux Kernel 2.6.x

39

Circular dendrogram of the clustering using Canberra distance and group average.

3. Linux Kernel 2.6.x

40

Circular dendrogram of the clustering using Canberra distance and McQuitty's method.

3. Linux Kernel 2.6.x

41

Circular dendrogram of the clustering using Canberra distance and single linkage.

3. Linux Kernel 2.6.x

42

Circular representation of the phylogenetic tree. This last plot shows the phylgenetic tree constructed by Pars.

3. Linux Kernel 2.6.x

43

4. The BSD Family

In this section we are going to take a quick look at the
BSD world. The operating systems considered are
FreeBSD, NetBSD, OpenBSD and Darwin. All the
systems have support for kernel modules but their use in
NetBSD and OpenBSD is limited. The "over time" term is
used here to refer to releases. Timelines for all the
systems except Darwin are presented in Appendix B.

Map of the external symbols for FreeBSD 7.2. As before, each tick
represents an external symbol. The horizontal axis contains 832 symbols.
The 26 .ko modules related to file systems were taken from the boot/kernel
directory of the bootonly install CD. The FFS, the native filesystem for
FreeBSD, is not compiled as module so it doesn't show up here.

44

Number of external symbols over time for FreeBSD.
To avoid overlapping this plot is split in five parts. A
few things are noticeable: first, for most of the
modules the number of external symbols dropped from
5.5 to 6.0 and second, with the exception of unionfs all
the other file systems didn't change much.

4. The BSD Family

45

Exported symbols over time for FreeBSD.
Because the compiled kernel is readily
available, an easy thing to do is to look
how the number of exported symbols
changed over time. Note that this plot
starts with FreeBSD 4.5, the first release
for which symbols were not stripped from
the kernel.

Exported symbols over time for NetBSD.
Unlike FreeBSD, in NetBSD there are
significant, usually increase, in the
number of symbols from one major release
to another. The plot starts from 1.5
because that was the first one being
compiled as ELF.

4. The BSD Family

46

Exported symbols over time for
OpenBSD. As in the case of NetBSD, the
graph is shorted at the left because all the
older ones are a.out.

Map of the external symbols for
Darwin 9.7.0. This is the kernel for
MacOS X 10.5.7. Each tick represents
an external symbols. There are 489
symbols on the horizontal axis.

4. The BSD Family

47

5. Conclusions

This is the end of this expedition. There are a lot of things that I didn't had
time to try. Here are a few of them.

As we saw, the number of external symbols is quite big. Even one file system
can have hundreads and we end up with more than a thousand symbols
when we consider a decent selection of file systems. This makes tracking
each symbol individually not very informative. One way to reduce the
complexity is to try to classify them. Doing this manually could be
accomplished by somebody familiar with that respective kernel but some
automatic method might be also attempted. With this classification in place,
the way the file systems are using various classes of symbols could become
more meaningful.

Another direction, which increases complexity, would be to take in
consideration not only that a kernel module is using a certain external
symbol but also from how many different places from inside its code it is
doing this. This information is contained in the relocation table of the object
file and it can be easily extracted using objdump.

From the personal side I can say that figuring how to get all the Linux
modules was kind of cool and learning about the way hierarchical clustering
works was very informative. The fact that BSDs have a system release with
each of their kernels (or conversely, that they make a new kernel release
with each system release) made them much easier to deal with. Their
archives, which contain binaries going all the way back to the very
beginning, represents a very valuable resource which could be used to track
their evolution.

Some trivia. There are 78 regular figures (out of which 10 have high-detail
versions) and 4 animations. The building of the phylogenetic tree for all the
2.6.x took about tree days of continuous running on a P4 at 2.8 GHz. The
memory consumption was decent though, only 200 MB. Before settling to the
final Circos graph I generated more than 50 circular plots showing the
relations between each file systems with everybody else. All of them look
very similar though. Except the circos plot and the the treemap all the others
are done in R. The treemap was obtained using GrandPerspective and
Inkscape.

Thank you for reading! And once again, if you find any mistake please let me
know.

48

49

Appendix A: The Building Process

Trying to build all the file systems from 2.6.x is quite a challenge by itself due the span of more
than 5 years which passed from 2.6.0 (December 2003) to 2.6.29 (March 2009). Luckily, kbuild,
the makefile-based build system did not change that much and I had to divide the releases in
two groups: 2.6.0 to 2.6.12 (older half) and 1.6.13 o 2.6.29 (newer half). For the first one I had to
use the

make -C ... SUBDIRS=...module.o

command while for the second I was able to use a simpler one

make fs/fs/module.ko.

In both cases the sequence of configuration commands was the following:

make mrproper
make allmodconfig
make prepare

On the toolchain front I used the latest binutils (2.19.1) from Debian 5.0 Lenny and two GCC
versions: the 4.1.2, the latest GCC from the 4.1 series that is available in Debian Unstable Sid
for the newer half and a manually-compiled 2.95.3 for the older one. To get 2.6.16 to 2.6.21 to
compile I also had to manually add an include for limits.h in the scripts/mod/sumversion.c.

From the storage perspective, the 30 kernel trees weight about 1.1 GB in tar.bz2 form, 7.4 GB
unpacked and 12.4 GB when all the file systems are compiled. To put things into perspective,
after make bzImage the 2.6.29 is 1.3 GB and gets to 3.8 GB after make modules. This is, of
course, an upper bound because the kernel was configured with make allmodconfig. A few more
details: the bzImage obtained this way was 3.7 MB and the 2595 .ko files that were produced
sum up to a hefty size of 889 MB.

Various sizes of the 2.6.x kernels.
From bottom to top, the number
indicate: the size of the .tar.bz2
archive, the uncompresses size, the
size after all the file systems were
compiled.

50

The scorecard of the compilation success. The line between 2.6.12 and
2.6.13 indicates the place where the make command had to be slightly
changed. The number of rows is 65. The number of successful compiled file
systems for 2.6.29 is 54. The total number of compiled file systems is 1377.
ext4 shows up with two names: ext4 and ext4dev. A notable thing is the "no
file system left behind" syndrome: once it got in the tree, a file system almost
never dies. There is only one true exception for this rule: intermezzo. The
other two are devfs and jffs which were deprecated in favor of their
descendants, sysfs and jffs2.

Appendix A: The Building Process

51

Appendix B: Timelines

Timeline of the Linux Kernel releases. In gray are depicted the development
branches and the small ticks from the the 2.6 branch are the minor releases.
The minor that sticks out is the 2.6.16. The data was extracted from the
timestamps of the files served by kernel.org. Tho dates, for 2.1.25 and 2.1.26
were wrong and were manually adjusted. The only omitted releases are the
2.2.0pre1 to 2.2.pre9.

Note that the proportion between the left (stable) and right (development)
axes is 1 to 3.

52

Timeline of the FreeBSD releases. The data for this graph was collected
from two sources: the freebsd.org/releases/ which provides month accuracy
dates and also the modification time for the the x.x-RELEASE/README.TXT
directories. The 2.2.9 release was announce on April 1st, 2006 with a funny
message.

Appendix B: Timelines

53

Timeline of the NetBSD releases. The
NetBSD 3.1 and 3.0.2 were released
simultaneously with the former
containing several new features
beside the critical bugfixes from the
latter. The situation is similar for
NetBSD 2.1 and 2.0.3 but they were
released 3 days apart from each other
(2.0.3 was the first).

Timeline of the OpenBSD releases.
The data was collected using the
modification timestamps from the
x.x/i386/MD5. As the FAQ
 indicates, the releases are 6 months
apart. As Dr. Lamar says in Gattaca:
Jerome, Jerome, the metronome.

Appendix B: Timelines

54

Appendix C: External symbols for 2.6.29 + tux3

Detailed map of external symbols.
This is a complete map of the external
symbols used by the file systems
compiled from the Linux Kernel
2.6.29 + tux3 branch. The symbols are
sorted in the descending order of their
frequency while the file systems are
sorted in the descending order of
number of external symbols they use.

This figure is only available online.

The End.

