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Abstract. Our paper summarizes experiments for measuring the accu-
racy of deformable 2D-3D registration between sets of simulated x-ray
images (DRR’s) and a statistical shape model of the pelvis bones, which
includes x-ray attenuation information (“density”). In many surgical sce-
narios, the images contain a truncated view of the pelvis anatomy. Our
work specifically addresses this problem by examining different selec-
tions of truncated views as target images. Our atlas is derived by apply-
ing principal component analysis to a population of up to 110 instance
shapes. The experiments measure the registration error with a large and
truncated FOV. A typical accuracy of about 2 mm is achieved in the 2D-
3D registration, compared with about 1.4 mm of an “optimal” 3D-3D
registration.

1 Introduction

Deformable statistical models of anatomy are useful tools for recovering the
shape of patient anatomy when only partial information is available. In a pre-
vious publication [1], we showed that a deformably registered anatomical model
can be combined with a limited-trajectory set of x-ray images to create a CT-like
“hybrid reconstruction”. The current paper focuses on assessing the accuracy of
our deformable registration.

A frequent challenge in registering data to intra-operative fluoroscopic images
is truncation, or a limited field of view (FOV) in the x-ray. Fig. 1 shows examples
of fluoroscopic images of a dry cadaveric pelvic girdle (our target anatomy),
taken with a common 9” C-arm. Only parts of the large and complex bone
appear in the image, and this may affect the registration results. A main goal of
this paper is to characterize a trade-off between different combinations of target
images: a large FOV and a small number of projections, or a small FOV and
varying numbers of projections. In comparison, previous works on deformable
2D-3D registration, such as [2,3,4], usually applied to smaller bones, such as the
proximal femur, and the view included the full anatomy.

We show in this paper that our shape atlas and the deformable 2D-3D regis-
tration method we created are relatively robust to the FOV truncation problem,
if the imaging poses are carefully selected. Our registration is based on normal-
ized mutual information (NMI) similarity, and does not require edge detection
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Fig. 1. Truncated fluoroscopic images of the pelvic bones. The images were taken with
a 9” OEC 9600 C-arm. Contours of a deformably registered atlas are overlaid in green.
The contours are part of an ongoing work discussed in Section 4.

(compare, for example, with [3]) or segmentation of the target images. The use
of NMI simplifies the assumptions on the image content, and appears to con-
tribute to the robustness to imaging constraints, such as noise, occlusions, and
truncated view.

2 Method

2.1 Atlas Creation

Our anatomical atlas [12] is modeled after the work of Yao [5,4] with some
modifications (the main differences are in the methods used to generate the
shape mesh and to co-register the template to the individual subjects), and
essentially following the Active Shape Models paradigm [6]. To create the atlas,
we start by labeling a selected CT study – the template CT, denoted CT0 – for
the anatomy of interest, i.e. the pelvis bones. From the labeled voxels, we create
a template tetrahedral mesh [7], denoted S0. Given a collection of subject CT
studies, {CTj}N

j=1, we compute for each subject instance j a deformation that
maps the voxels of CT0 to corresponding voxels of CTj [8]. This deformation is
applied to the vertices of S0 to obtain a subject shape Sj . Finally, all the shape
instances are aligned using a similarity transformation, and modes of variation
are extracted from this population using principal component analysis. A new
shape instance can be generated from the atlas as

Ŝ = S̄ +
L∑

i=1

wiVi (1)

where S̄ is the “mean shape” obtained from aligning all the instance shapes;
{wi} are scalar weights; and {Vi}L

i=1 are the first L modes in the distribution of
shapes.

Every tetrahedral cell in the atlas mesh is assigned with a CT density at-
tribute, in the form of a 3rd order barycentric Bernstein polynomial. The poly-
nomial coefficients are obtained by fitting to the CT intensity numbers in the
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template study voxels covered by that cell. At this stage, we use the densities of
a single subject in the atlas, though Yao performed a statistical anlaysis of the
densities as well.

2.2 2D-3D Registration

For the registration experiments, we use Take software [9] to create DRR’s of
segmented CT datasets. For each target image, denoted Ik, the intrinsic and
extrinsic camera parameters are given. In this paper’s DRR’s, the parameters
are user-defined. In a clinical scenario, a calibrated C-arm and a form of tracking,
e.g. optical markers or encoders, would be used to image the patient.

The registration algorithm creates DRR’s of our atlas using a fast render-
ing algorithm [10]. For each camera pose k, the normalized mutual information
similarity measure

NMIk = (H(Ik) + H(DRRk))/H(Ik, DRRk) (2)

is computed (selected based on [11]), where H is the entropy of pixel intensity
distribution (or joint distribution). The final similarity score for the entire set
of projections is Sim =

∑K
k=1 NMIk. Our method searches for the maximum

of this score using the Nelder-Mead downhill-simplex algorithm, over the space
spanned by the following parameters: translation (d), rotation (R), isotropic
scale (s), and shape mode weights {wi}. The estimated shape has the form in
Equation 1. The final, registered model is the outcome of applying a similarity
transformation to Ŝ: Sreg = s(R·Ŝ+d). We alternate subsets of parameters, such
as a translation vector or rotation “Rodrigues” vector, search for the optimal
value on each subset, and fix the result when searching the next subset.

2.3 Imaging Parameters

This paper examines two sizes of the field of view: 270 mm and 160 mm (see
Fig. 2). These sizes relate to a “virtual” detector plane located at the isocenter
of camera motion (typically inside the object), and reflect approximately the
diameter of the visible portion of anatomy. The 270 mm FOV covers either the
full or nearly-full anatomy of the pelvic bones. The 160 mm FOV is roughly
comparable to a 9” C-arm image intensifier (about 216 mm) lying outside of the
object (Fig. 1). The source-to-detector distance was set to 800 mm.

By our experience (and Yao’s [5]), when a large field of view is available, two or
three viewing directions, such as antero-posterior (AP), lateral, and oblique, are
sufficient for a good registration. But when only a truncated view is available,
more views may be required. To examine this, we run the registration using
three, six, or eight truncated views, which cover increasing portions of the pelvis’s
anatomy.

Fig. 2 demonstrates the target images and the registration results for one
subject. For the 270 mm images, (a)-(c), we rotated the camera in a circular
arc about the the object’s Z axis, and imaged at angles 0◦ (lateral view), 45◦
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Fig. 2. Reference images and deformable registration results. The contours of a regis-
tered atlas are overlaid in green on the reference images. (a)-(c) FOV=270 mm. (d)-(l)
FOV=160 mm. Images (d)-(f) are used in the three-view registration. Images (g)-(l)
are used in the six-view registration. All of (d)-(l) except (f) are used in the eight-view
registration. The axis directions of the model are shown in yellow.

(oblique view), and 90◦ (AP view). The model axis directions are illustrated in
the Figure. For the 160 mm images, (d)-(l), we included rotation and translation
in the camera trajectory. The translations included moving the camera 40 mm
up and down the Z axis, and moving 30 mm up the Y axis. The view angles
included 0◦, 30◦, 45◦, and 90◦. The images were selected to include features such
as the proximal and distal ends of bones, the ilium, and the sacrum.

2.4 Accuracy Measure

Because of the deformable component, it is hard to define the “exactly correct”
registration parameters, unless we use artifically created instances. Hence, in this
paper, we measure the effective error by surface-to-surface distance between the
registered shape of the atlas and a “ground truth” shape.

We performed leave-one-out tests by randomly slecting datasets from the
study population. For each selected subject, j, we used the remaining datasets
to create a shape atlas, Aj . The subject shape Sj (left out of the atlas) was
regarded as the “ground truth”, and used as a segmentation mask over the CT
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study CTj . The masked subject dataset, CT Sgmt
j , was passed as input to the

DRR generator to create the target images {I
(j)
k }.

Next, the atlas Aj was deformably registered with {I
(j)
k } to create a result

shape Sreg
j . Finally, the outer surface of Sreg

j was compared with the Sj by way
of projection on the nearest neighbor: For each vertex vl on the surface of Sreg

j ,
we define sl as the nearest point on Sj (sl is not necessarily a vertex of Sj). We
defined el = sl −vl as the error vector at the vertex vl, and computed statistics
on ||el||.

For comparison, we estimated the “optimal” 3D-3D registration that our at-
las may achieve for the subject j using mode matching [5]. Based on the cor-
respondence of vertices between the atlas Aj and the shape Sj, we computed
the deformable registration parameters that minimize the sum of squared dis-
tances between the corresponding vertices. This produced an “optimal” shape
Uj , which we compared with Sj using the same surface-to-surface error metric
as above.1

3 Results and Discussion

Our study population consisted of 110 CT scans of the pelvis, taken from prostate
cancer patients. Eleven datasets were selected at random as experiment targets.
They were resampled to a uniform voxel size of 1.875 mm cube before DRRs
were generated. The mesh population was the output of the first pass of a boot-
strapping experiment, presented separately [12]. All the registration experiments
used the first L = 15 shape variation modes.

In all the experiments, we started from an arbitrary initial guess of zero trans-
lation, rotation, and deformation magnitude. The final translation magnitudes
were between 13 mm and 59 mm, in different directions; the final rotation mag-
nitudes were between 10◦ and 17◦, about different axes. Table 1 summarizes the
surface distances of each registration experiment from the “ground truth” shape
Sj .

According to Table 1, there is a slight decline in the mean registration error
of the truncated images when more views are used. This suggests diminishing
returns on the number of truncated views. For some subjects (e.g. 10, 26, 44) the
registration error with three truncated views than with six or eight. This may be
due to the assumptions underlying our choice of objective function in relation to
the evaluation criterion. The best 2D-3D registration results, in almost all cases,
were achieved with the larger FOV of 270 mm. For comparison, the mean error
of the 3D-3D registration was about 1.4 mm.

Fig. 3 shows the distribution of registration errors on the surface of a represen-
tative bone, computed as a mean per vertex over the population of Table 1. We
compare the results of (a) 2D-3D registration using eight views, and (b) 3D-3D

1 In a previous series of experiments, we compared Uj with a hand-segmented shape.
Due to shape uncertainties in both Sj and the hand segmentation, we decided to
use Sj as the ground truth.
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Table 1. Summary of surface distances (in mm) between the registration results and
subject-specific (“ground truth”) shapes

Sub-
ject

FOV=270 mm
3 views

FOV=160 mm
3 views

FOV=160 mm
6 views

FOV=160 mm
8 views

3D Mode
Matching

Mean Max Mean Max Mean Max Mean Max Mean Max
10 1.94 12.06 2.05 10.77 2.20 11.00 2.09 11.48 1.59 6.97
26 2.00 8.31 2.02 13.78 2.10 12.45 2.10 12.83 1.59 8.13
31 1.77 7.93 2.37 17.48 1.86 10.53 1.72 8.87 1.63 10.37
41 1.71 9.35 1.85 7.91 1.75 8.04 1.82 8.25 1.02 5.68
43 3.44 17.83 3.42 20.59 3.26 19.51 2.98 17.68 1.08 6.00
44 1.92 10.26 2.34 13.62 2.37 14.02 2.40 13.45 1.50 7.73
58 2.23 9.08 2.43 13.15 2.31 12.81 2.48 11.59 1.70 7.67
60 1.70 9.01 1.58 10.13 1.65 7.40 1.67 7.71 1.49 6.09
66 1.59 8.80 1.50 7.73 1.74 9.75 1.81 9.21 1.18 6.14
68 1.48 7.05 1.85 7.17 1.66 7.49 1.71 8.61 1.27 8.48
76 1.92 16.34 2.48 13.74 2.02 13.66 2.13 14.68 1.52 11.82

Mean 1.97 10.55 2.17 12.37 2.08 11.51 2.08 11.31 1.42 7.73
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Fig. 3. Distribution of surface registration errors on the pelvis. (a) 2D-3D registration,
FOV=160 mm, 8 views. (b) Mode-matching 3D-3D registration. The error is the mean
surface distance per vertex over the studied population. The color scales are adjusted
to highlight each registration’s individual distribution.

mode matching. The color scales in the two parts are adjusted to highlight the
distribution, not to compare the errors. For the 2D-3D registration, the error
distribution is asymmetric, with a significant tilt to the right hemipelvis. This
may be a side-effect of the selection of imaging trajectory (Fig. 2), which pre-
ferred one side of the subject over another. In the mode matching registration,
some areas of the bone have higher errors than others, for example: the ante-
rior spine of the ilium, the vicinity of the obturator foramen, and the tip of the
sacrum. Some of these “common” errors also appear in the 2D-3D registration.



Deformable 2D-3D Registration of the Pelvis with a Limited FoV 525

They may be regions of higher variation among the studied datasets, where the
statistical modes cannot approximate the shape as well as in other locations.

Overall, the spatial distribution of errors for both the 2D-3D and 3D-3D
appears, visually, quite similar, with the exception of the asymmetry. In future
research, we are planning to see if the asymmetry can be reduced by changing
the imaging trajectory.

4 Conclusion and Future Work

We have shown that a 2D-3D deformable registration of a shape and density
atlas of the pelvis to x-ray images, based on normalized mutual information
image similarity, can be robust to image truncation. A typical expected surface
registration error is about 2 mm, compared with an “ideal” registration error of
about 1.4 mm. A larger FOV can usually yield a better registration accuracy,
and the use of more truncated views can improve the accuracy to some degree.
This result has important applications in recovering a patient’s anatomical shape
in clinical scenarios, when small FOV C-arms are used to image the patient.

While the results we present are encouraging, applying the method on real flu-
oroscopic images is still a challenge. In Fig. 1, we show the result of a deformable
2D-3D registration as green contours of the registered model overlaid on x-ray
target images of a cadaveric bone specimen. Qualitatively, we can observe that
our model aligns with the bone as a whole, but does not align very well with
specific features, such as the obturator foramen and the acetabular rim. It may
be that this particular specimen is not a good representative of the studied pop-
ulation, which would decrease the overall quality of the registration. In addition,
the MI similarity measure did not produce a good registration with these images,
possibly because of different imaging characteristics of dry bone compared with
live patient DRR. The results shown were obtained by maximizing the structural
similarity index (SSIM) [13].

Human subject images also contain other anatomical detail than the pelvis
bones: femurs, spine, and other organ tissues. These affect the image quality signif-
icantly, adding clutter and reducing contrast. In initial experiments we conducted,
we included a crude “soft tissue” model and used the SSIM index as to achieve a
coarse-level registration. Again, the MI measure did not perform as well.

It has been suggested (e.g. in [11]) that NMI as an image similarity measure
may be more robust to FOV truncation than mutual information. In a previous
series of expetiments, we used MI as the objective function. While the rate of
successful registrations was higher with NMI, the final accuracy seems roughly
the same for both functions. In some of the previous experiments, the asymmetry
of error was not as pronounced as in the results here.

We would like to thank the anonymous reviewers of this paper for their sugges-
tions, which led to the new experiments in this paper. Further study of different
similarity measures for the registration with simulated and real images, and their
applicability, is continuing. We are also continuing a search for representative ca-
daver bones which match well with the training population.
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