
Collision Detection

Simon Leonard

Hands On Resources

Computational Geometry
Computational Geometry: Algorithms
and Applications

Collision Detection
Real-Time Collision Detection

Flexible Collision Library (FCL)
http://gamma.cs.unc.edu/FCL

Motion Planning

• Robot moves in
configuration space

• Objects and distances are
defined in Cartesian
space

• Motion planning searches
for collision free paths

• If a robot moves from qA
to qB, how do you
determine if it will hit
anything along the way?
– What is “the way”?

– Reactive vs interpolated

qA

qB

Motion: Configuration Space
Obstacles: Cartesian Space

OBSTACLE
 Obstacle carving

the configuration
space

Principles of Robot Motion

Motion: Configuration Space
Obstacles: Cartesian Space

• Reactive system
– Use sensors to avoid or

mitigate contacts
• Range finder to detect

distances to obstacles

• Bumpers/tactile sensors to
detect small collisions

• Force sensors to detect
unexpected interactions

– Use a “greedy” algorithm
(like a potential field) to
move toward a goal while
avoiding the obstacle

• Planning system
– Use the 3D geometry of

the robot and environment
to plan a path before
moving

– Find where the robot can
move without colliding

Reactive Motion

• Control and sensor-based

• A robot can move in
reaction to an observation
– Typically obtained from

measurements (encoders,
GPS, camera, range, force,
bumper, etc.)

• Given a measurement of
how far the robot is from
the goal, the robot takes a
step toward the goal

www.dlr.de

Interpolated Motion
How Robots Move?

• Parametric motion (i.e. a
joint follows a polynomial
trajectory)

• A robot moves according
to a known equation that
specifies at time varying
configuration, velocity
and acceleration in
configuration space

– Linear, trapezoid, quintic,
etc.

t

q

t

dq

t

q

t

dq

qA

qB

qA

qB

Constant velocity profile

Trapezoid velocity profile

Interpolated Motion

• If we know that a robot
moves from qA to qB
according to a parametric
trajectory, how do we
determine if (and where)
the robot collides with an
obstacle?

• Larger question: if an
obstacle travels in space,
how do we determine if
(and where) it will collide?

• What if the robot and
obstacle both move?

Principles of Robot Motion

Geometry: 3D Meshes

• Collision detection
between basic shapes
(circles, spheres, lines,
triangles and squares and
3 boxes) is fairly easy

• Complex shapes can be
composed of several
thousands of simple
shapes and doing an
exhaustive search is
costly

25 collision tests

Collision Detection

• Using basic shapes to
“bound” objects is
conservative

• Organize basic shapes
in a hierarchy of
bounding volumes

thomasdiewald.com

inst.eecs.berkeley.edu

Hierarchy of Bounding Volumes

a

a a

Bounding Volumes Hierarchy

• More complex models require
hierarchies of bounding volumes
– Spheres
– Axis Aligned Bounding Boxes

(AABB)
– Oriented Bounding Boxes (OBB)
– Swept Sphere Volumes (SSV)

• Unless the geometry changes,
build the hierarchy once (offline)

• What makes a good bounding
volume?
– Tightness of fit
– Speed of collision detection

computation between bounding
volumes

Collision Detection

a

a

a

• Given the hierarchies of
two objects
– Check if the top level

bounding volumes collide
• If they don’t collide then

the objects do not collide
• If they collide then test for

collision between the
children

– Apply recursion until we a
collision is found between
two primitives (triangles)
or no more collision test
are needed
 11 collision tests

Axis Aligned Bounding Box (AABB)

• Bound the volume with
a 3D box that is aligned
with the X-Y-Z axis

– Easy to build

– Not very tight fit

– Fast to test for collision

Oriented Bounding Box (OBB)

• Keep the vertices of
the mesh’s convex hull

• Find the principal axis
of the vertices

– This gives an orientation
of the bounding volume

• Divide the mesh along
the dominant axis

Collision Between OBB

• Separating Axis Theorem
– Two OBB do not collide if

there is a separating axis
L on which the projection
of both OBB does not
intersect

• How do we find this line?
– Note that the separating

line is perpendicular to
the separating axis

– A separating line exists if
and only if there is a
separating line that is
parallel to an edge of
rectangle A or B

http://www.jkh.me

Separating
line

Collision Between OBB

• Use separating lines
that are parallel to
the edges of A and B

• Given that each
rectangle has 2
parallel edges only 4
axis are checked

• Project both
rectangles on each
axis and check if the
projections intersect

http://www.jkh.me

Collision Between OBB

http://www.jkh.me

Collision Between OBB

http://www.jkh.me

Collision Between OBB

http://www.jkh.me

xybxxBax ABHABWWAT )()(

How many FLOPS?

Collision Between OBB

• Separating Axis Theorem
– Two OBB do not collide if

there is a separating line
L on which the projection
of both OBB does not
intersect.

– Test for 15 axes is
sufficient to determine if
such line exists:
• 3 axes of A
• 3 axes of B
• xa x xB, xa x yB, xa x zB
• ya x xB, ya x yB, ya x zB
• za x xB, za x yB, za x zB

• 200 FLOPS max!

L

Collision
between

faces

Collision
between

edges

Using Collision Detection
During a Trajectory

• If we know that a robot moves
from qA to qB according to an
parametric trajectory, how do we
determine if (and where) the
robot collides with an obstacle?
1. Move the robot from qA to

qA+Dq and test for a
collision between te robot
and its environment

2. Repeat until the robot
reaches qB

• How large should Dq be?
• If Dq is too large we might

step over thin objects
• If Dq is tool small more

tests will be used

Schwarzer 2005

Dq

Adaptive Local Planner

• What is the relation
between the initial and
final distances to collision
and the maximum
travelling distance?
– I start 1m away from any

obstacle
– I finish 1m away from any

obstacle
– No point on me (robot)

travelled by a distance
greater than 0.1m

– Can I determine that I did
not collide?

Obstacle

Start
position

Final
position

Initial distance
from obstacle

Final distance
from obstacle

Longest
distance
travelled

Adaptive Local Planner

• Suppose there is a collision
between the robot R and the
world W when the robot
moves from qA to qB and that
the collision happens at
configuration qC

• Then let
– d(R(q), W): The shortest

distance between the robot in
configuration q and any
obstacle in W.

– I(R(qA), R(qB)): The longest
distance travelled by any point
on the robot as it moves from
qA to qB

R(qB)

R(qA)

l(qA,qB)

Obstacle

d(R(qB), W)

d(R(qA), W)

Adaptive Local Planner

• Suppose there is a collision
between the robot and the
world at configuration qC

• Then it must be that

1) From qA to qC, there is a point

that travels a greater distance
than the shortest initial
distance between the robot
and the obstacle

2) From qB to qC, there is a point
that travels a greater distance
than the shortest final
distance between the robot
and the obstacle

d(R(qA), W) < l(R(qA), R(qC)) (1)

d(R(qB), W) < l(R(qB), R(qC)) (2)

Obstacle

R(qA)

R(qB)

R(qC)

d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB))

Adaptive Local Planner

• If we add (1) and (2) we can determine that
there is no collision between qA and qB if

• No need to find the collision configuration qC!

• If the inequality is not satisfied?
– It does not mean that there is a collision

– Divide the trajectory [qA, qB] in two [qA, qM] and
[qM, qB] and test each of them recursively.

– Only need to test for a collision at qA, qB and qM

d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB))

Adaptive Local Planner

• If the robot is far from any obstacle and does a small
motion, then d(R(qA),W)+d(R(qB),W) is large and
l(R(qA), R(qB)) is small

• Therefore

 determine right away that there is no collision

• On the other hand, if d(R(qA),W)+d(R(qB),W) is small
and l(R(qA), R(qB)) is large then the robot is moving
close to obstacles and the trajectory must be broken
down into small segments (like testing for collision)

d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB))

Larsen UNC 1999

Distance Between Two Objects

• Use a hierarchy of swept sphere bounding
volumes (SSV)

– Point Swept Volume

– Line Swept Volume

– Rectangular Swept Volume

Point Swept Sphere

• Computing the distance
between two 3D points is
easy (d = || p1-p2||)

• If you “sweep” each point
with a sphere of radius r1
and r2, each point
becomes a sphere of
radius r1 and r2
respectively

• Computing the distance
between two spheres is
easy(d= || p1-p2||-r1-r2)

p1

p2

||p1-p2|| -r1-r2

r1

r2

Line Swept Sphere (LSS)

• Computing the distance
between two line
segments L1 and L2 is
“easy”

• If you “sweep” each line
with a sphere of radius r1
and r2, each line expands
by a sphere or radius r1
and r2 respectively

• Computing the distance
between two LSS is the
distance between both
segments minus r1 and r2

L1

L2

r1

r2

Distance between L1 and
L2 minus r1 and r2

Rectangle Swept Sphere (RSS)

• Computing the distance
between two rectangles
R1 and R2 is “easy”

• If you “sweep” each
rectangle with a sphere of
radius r1 and r2, each
rectangle expands by a
sphere of radius r1 and r2
respectively

• Computing the distance
between two RSS is the
distance between both
rectangles minus r1 and r2

R1

R2

r1

r2

Distance between R1

and R2 minus r1 and r2

qA

qB

l(qA,qB)

Greatest Distance Traveled

• What is the point on
the body’s surface that
travels the greatest
distance from qA to qB?

• Upper bound the
length of the trajectory
traveled by any point
on the volume
between configuration
qA and qB

qA

qB

d(R(qA), W) + d(R(qB), W) > O(l(R(qA),R(qB)))

Upper Bound on l(R(qA), R(qB))

• What is the maximum contribution of each
joint to I(R(qA), R(qB))?

– Rotate the 3D model of each link by 360o and fit
an enclosing sphere and to the data point

– The radius of the sphere guarantees that no point
on the robot will move outside the spheres

– For a rotation Dqi of joint i, no point will travel a
distance greater than riDqi because of joint i.

Bound the Distance Travelled by Any
Point on a Robot

Schwarzer 2005

l(R(qA), R(qB)) =

d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB))

Upper Bound on l(R(qA), R(qB))

• Given a trajectory between qA and qB

• Given a set of sphere radius ri

 Dq = | qB – qA |

 l(R(qA), R(qB) < Dq1r1 + ... + Dqnrn

