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Hands On Resources 

Computational Geometry 
Computational Geometry: Algorithms 
and Applications 

Collision Detection 
Real-Time Collision Detection 

Flexible Collision Library (FCL) 
http://gamma.cs.unc.edu/FCL 



Motion Planning 

• Robot moves in 
configuration space 

• Objects and distances are 
defined in Cartesian 
space 

• Motion planning searches 
for collision free paths 

• If a robot moves from qA 
to qB, how do you 
determine if it will hit 
anything along the way? 
– What is “the way”? 

– Reactive vs interpolated 

qA 

qB 



Motion: Configuration Space 
Obstacles: Cartesian Space 

 
OBSTACLE 
 Obstacle carving 

the configuration 
space 

Principles of Robot Motion 



Motion: Configuration Space 
Obstacles: Cartesian Space 

• Reactive system 
– Use sensors to avoid or 

mitigate contacts 
• Range finder to detect 

distances to obstacles 

• Bumpers/tactile sensors to 
detect small collisions 

• Force sensors to detect 
unexpected interactions 

– Use a “greedy” algorithm 
(like a potential field) to 
move toward a goal while 
avoiding the obstacle 

• Planning system 
– Use the 3D geometry of 

the robot and environment 
to plan a path before  
moving 

– Find where the robot can 
move without colliding 



Reactive Motion 

• Control and sensor-based 

• A robot can move in 
reaction to an observation 
– Typically obtained from 

measurements (encoders, 
GPS, camera, range, force, 
bumper, etc.) 

• Given a measurement of 
how far the robot is from 
the goal, the robot takes a 
step toward the goal 

www.dlr.de 



Interpolated Motion 
How Robots Move? 

• Parametric motion (i.e. a 
joint follows a polynomial 
trajectory) 

• A robot moves according 
to a known equation that 
specifies at time varying 
configuration, velocity 
and acceleration in 
configuration space 

– Linear, trapezoid, quintic, 
etc.  
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Constant velocity profile 

Trapezoid velocity profile 



Interpolated Motion 

• If we know that a robot 
moves from qA to qB 
according to a parametric 
trajectory, how do we 
determine if (and where) 
the robot collides with an 
obstacle? 

• Larger question: if an 
obstacle travels in space, 
how do we determine if 
(and where) it will collide?  

• What if the robot and 
obstacle both move? 

Principles of Robot Motion 



Geometry: 3D Meshes 

• Collision detection 
between basic shapes 
(circles, spheres, lines, 
triangles and squares and 
3 boxes) is fairly easy 

• Complex shapes can be 
composed of several 
thousands of simple 
shapes and doing an 
exhaustive search is 
costly 

25 collision tests 



Collision Detection 

• Using basic shapes to 
“bound” objects is 
conservative 

 

 

• Organize basic shapes 
in a hierarchy of 
bounding volumes 

 
thomasdiewald.com 

inst.eecs.berkeley.edu 



Hierarchy of Bounding Volumes 

a 
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Bounding Volumes Hierarchy 

• More complex models require 
hierarchies of bounding volumes 
– Spheres 
– Axis Aligned Bounding Boxes 

(AABB) 
– Oriented Bounding Boxes (OBB) 
– Swept Sphere Volumes (SSV) 

• Unless the geometry changes, 
build the hierarchy once (offline) 

• What makes a good bounding 
volume? 
– Tightness of fit 
– Speed of collision detection 

computation between bounding 
volumes 

 



Collision Detection 

a 

a 

a 

• Given the hierarchies of 
two objects 
– Check if the top level 

bounding volumes collide 
• If they don’t collide then 

the objects do not collide 
• If they collide then test for 

collision between the 
children 

– Apply recursion until we a 
collision is found between 
two primitives (triangles) 
or no more collision test 
are needed 
 11 collision tests 



Axis Aligned Bounding Box (AABB) 

• Bound the volume with 
a 3D box that is aligned 
with the X-Y-Z axis 

– Easy to build 

– Not very tight fit 

– Fast to test for collision 

 



Oriented Bounding Box (OBB) 

• Keep the vertices of 
the mesh’s convex hull 

• Find the principal axis 
of the vertices 

– This gives an orientation 
of the bounding volume 

• Divide the mesh along 
the dominant axis  



Collision Between OBB 

• Separating Axis Theorem 
– Two OBB do not collide if 

there is a separating axis 
L on which the projection 
of both OBB does not 
intersect 

• How do we find this line? 
– Note that the separating 

line is perpendicular to 
the separating axis 

– A separating line exists if 
and only if there is a 
separating line that is 
parallel to an edge of 
rectangle A or B 

http://www.jkh.me 

Separating 
line 



Collision Between OBB 

• Use separating lines 
that are parallel to 
the edges of A and B 

• Given that each 
rectangle has 2 
parallel edges only 4 
axis are checked 

• Project both 
rectangles on each 
axis and check if the 
projections intersect 

http://www.jkh.me 



Collision Between OBB 

http://www.jkh.me 



Collision Between OBB 

http://www.jkh.me 



Collision Between OBB 

http://www.jkh.me 
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Collision Between OBB 

• Separating Axis Theorem 
– Two OBB do not collide if 

there is a separating line 
L on which the projection 
of both OBB does not 
intersect. 

– Test for 15 axes is 
sufficient to determine if 
such line exists:  
• 3 axes of A 
• 3 axes of B  
• xa x xB,   xa x yB,  xa x zB  
• ya x xB,   ya x yB,  ya x zB  
• za x xB,   za x yB,  za x zB  

 

• 200 FLOPS max! 

L 

Collision 
between 

faces 

Collision 
between 

edges 



Using Collision Detection 
During a Trajectory 

• If we know that a robot moves 
from qA to qB according to an 
parametric trajectory, how do we 
determine if (and where) the 
robot collides with an obstacle? 
1. Move the robot from qA to 

qA+Dq and test for a 
collision between te robot 
and its environment 

2. Repeat until the robot 
reaches qB 

• How large should Dq be? 
• If Dq is too large we might 

step over thin objects 
• If Dq is tool small more 

tests will be used 

Schwarzer 2005 

Dq 



Adaptive Local Planner  

• What is the relation 
between the initial and 
final distances to collision 
and the maximum 
travelling distance? 
– I start 1m away from any 

obstacle 
– I finish 1m away from any 

obstacle 
– No point on me (robot) 

travelled by a distance 
greater than 0.1m 

– Can I determine that I did 
not collide? 

 

Obstacle 

Start 
position 

Final 
position 

Initial distance 
from obstacle 

Final distance 
from obstacle 

Longest 
distance 
travelled 



Adaptive Local Planner 

• Suppose there is a collision 
between the robot R and the 
world W when the robot 
moves from qA to qB and that 
the collision happens at 
configuration qC 

• Then let 
– d( R(q), W ): The shortest 

distance between the robot in 
configuration q and any 
obstacle in W.  

– I( R(qA), R(qB) ): The longest 
distance travelled by any point 
on the robot as it moves from 
qA to qB 

R(qB) 

R(qA) 

l(qA,qB) 

Obstacle 

d( R(qB), W ) 

d( R(qA), W ) 



Adaptive Local Planner 

• Suppose there is a collision 
between the robot and the 
world at configuration qC 

• Then it must be that 
 
 

 
1) From qA to qC, there is a point 

that travels a greater distance 
than the shortest initial 
distance between the robot 
and the obstacle 

2) From qB to qC, there is a point 
that travels a greater distance 
than the shortest final 
distance between the robot 
and the obstacle 
 

d( R(qA), W ) < l( R(qA), R(qC) ) (1) 

d( R(qB), W ) < l( R(qB), R(qC) ) (2) 

Obstacle 

R(qA) 

R(qB) 

R(qC) 



d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB)) 

Adaptive Local Planner 

• If we add (1) and (2) we can determine that 
there is no collision between qA and qB if 

 

• No need to find the collision configuration qC! 

• If the inequality is not satisfied? 
– It does not mean that there is a collision 

– Divide the trajectory [qA, qB ] in two [ qA, qM ] and 
[qM, qB] and test each of them recursively. 

– Only need to test for a collision at qA, qB and qM 

d( R(qA), W ) + d( R(qB), W ) > l( R(qA),R(qB) ) 



Adaptive Local Planner 

• If the robot is far from any obstacle and does a small 
motion, then d(R(qA),W)+d(R(qB),W) is large and 
l(R(qA), R(qB)) is small 

• Therefore 

 

 determine right away that there is no collision 

• On the other hand, if d(R(qA),W)+d(R(qB),W) is small 
and l(R(qA), R(qB)) is large then the robot is moving 
close to obstacles and the trajectory must be broken 
down into small segments (like testing for collision) 

d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB)) 



Larsen UNC 1999 

Distance Between Two Objects 

• Use a hierarchy of swept sphere bounding 
volumes (SSV) 

– Point Swept Volume 

– Line Swept Volume 

– Rectangular Swept Volume 



Point Swept Sphere 

• Computing the distance 
between two 3D points is 
easy (d = || p1-p2||) 

• If you “sweep” each point 
with a sphere of radius r1 
and r2, each point 
becomes a sphere of 
radius r1 and r2 
respectively 

• Computing the distance 
between two spheres is 
easy(d= || p1-p2||-r1-r2) 

p1 

p2 

||p1-p2|| -r1-r2 

r1 

r2 



Line Swept Sphere (LSS) 

• Computing the distance 
between two line 
segments L1 and L2 is 
“easy” 

• If you “sweep” each line 
with a sphere of radius r1 
and r2, each line expands 
by a sphere or radius r1 
and r2 respectively 

• Computing the distance 
between two LSS is the 
distance between both 
segments minus r1 and r2 

L1 

L2 

r1 

r2 

Distance between L1 and 
L2 minus r1 and r2 



Rectangle Swept Sphere (RSS) 

• Computing the distance 
between two rectangles 
R1 and R2 is “easy” 

• If you “sweep” each 
rectangle with a sphere of 
radius r1 and r2, each 
rectangle expands by a 
sphere of radius r1 and r2 
respectively 

• Computing the distance 
between two RSS is the 
distance between both 
rectangles minus r1 and r2 

R1 

R2 

r1 

r2 

Distance between R1 

and R2 minus r1 and r2 



qA 

qB 

l(qA,qB) 

Greatest Distance Traveled 

• What is the point on 
the body’s surface that 
travels the greatest 
distance from qA to qB? 

• Upper bound the 
length of the trajectory 
traveled by any point 
on the volume 
between configuration 
qA and qB 

 

qA 

qB 

d(R(qA), W) + d(R(qB), W) > O( l(R(qA),R(qB)) ) 



Upper Bound on l( R(qA), R(qB) )  

• What is the maximum contribution of each 
joint to I( R(qA), R(qB) )? 

– Rotate the 3D model of each link by 360o and fit 
an enclosing sphere and to the data point 

– The radius of the sphere guarantees that no point 
on the robot will move outside the spheres 

– For a rotation Dqi of joint i, no point will travel a 
distance greater than riDqi because of joint i.  

 



Bound the Distance Travelled by Any 
Point on a Robot 

Schwarzer 2005 

l( R(qA), R(qB) ) = 





 



 



 



d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB)) 

Upper Bound on l( R(qA), R(qB) )  

• Given a trajectory between qA and qB 

• Given a set of sphere radius ri  

  Dq = | qB – qA | 

  l( R(qA), R(qB) < Dq1r1 + ... + Dqnrn 


