Collision Detection

Simon Leonard

Hands On Resources

Computational Geometry Computational Geometry: Algorithms and Applications

Collision Detection Real-Time Collision Detection

Flexible Collision Library (FCL) http://gamma.cs.unc.edu/FCL

Motion Planning

- Robot moves in configuration space
- Objects and distances are defined in Cartesian space
- Motion planning searches for collision free paths
- If a robot moves from q_A to q_B, how do you determine if it will hit anything along the way?
	- What is "the way"?
	- Reactive vs interpolated

Motion: Configuration Space Obstacles: Cartesian Space

Principles of Robot Motion

Motion: Configuration Space Obstacles: Cartesian Space

- Reactive system
	- Use sensors to avoid or mitigate contacts
		- Range finder to detect distances to obstacles
		- Bumpers/tactile sensors to detect small collisions
		- Force sensors to detect unexpected interactions
	- Use a "greedy" algorithm (like a potential field) to move toward a goal while avoiding the obstacle
- Planning system
	- Use the 3D geometry of the robot and environment to plan a path before moving
	- Find where the robot can move without colliding

Reactive Motion

- Control and sensor-based
- A robot can move in reaction to an observation
	- Typically obtained from measurements (encoders, GPS, camera, range, force, bumper, etc.)
- Given a measurement of how far the robot is from the goal, the robot takes a step toward the goal

www.dlr.de

Interpolated Motion How Robots Move?

- Parametric motion (i.e. a joint follows a polynomial trajectory)
- A robot moves according to a known equation that specifies at time varying configuration, velocity and acceleration in configuration space
	- Linear, trapezoid, quintic, etc.

Interpolated Motion

- If we know that a robot moves from q_{A} to q_{B} according to a parametric trajectory, how do we determine if (and where) the robot collides with an obstacle?
- Larger question: if an obstacle travels in space, how do we determine if (and where) it will collide?
- What if the robot and obstacle both move?

Geometry: 3D Meshes

- Collision detection between basic shapes (circles, spheres, lines, triangles and squares and 3 boxes) is fairly easy
- Complex shapes can be composed of several thousands of simple shapes and doing an exhaustive search is costly

Collision Detection

• Using basic shapes to "bound" objects is conservative

• Organize basic shapes in a hierarchy of bounding volumes

thomasdiewald.com

Hierarchy of Bounding Volumes

Bounding Volumes Hierarchy

- More complex models require hierarchies of bounding volumes
	- Spheres
	- Axis Aligned Bounding Boxes (AABB)
	- Oriented Bounding Boxes (OBB)
	- Swept Sphere Volumes (SSV)
- Unless the geometry changes, build the hierarchy once (offline)
- What makes a good bounding volume?
	- Tightness of fit
	- Speed of collision detection computation between bounding volumes

Collision Detection

- Given the hierarchies of two objects
	- Check if the top level bounding volumes collide
		- If they don't collide then the objects do not collide
		- If they collide then test for collision between the children
	- Apply recursion until we a collision is found between two primitives (triangles) or no more collision test are needed

11 collision tests

Axis Aligned Bounding Box (AABB)

- Bound the volume with a 3D box that is aligned with the X-Y-Z axis
	- Easy to build
	- Not very tight fit
	- Fast to test for collision

Oriented Bounding Box (OBB)

- Keep the vertices of the mesh's convex hull
- Find the principal axis of the vertices
	- This gives an orientation of the bounding volume
- Divide the mesh along the dominant axis

- Separating Axis Theorem
	- Two OBB do not collide if there is a separating *axis* L on which the projection of both OBB does not intersect
- How do we find this line?
	- Note that the separating *line* is perpendicular to the separating axis
	- A separating line exists if and only if there is a separating line that is parallel to an edge of rectangle A or B

http://www.jkh.me

- Use separating lines that are parallel to the edges of A and B
- Given that each rectangle has 2 parallel edges only 4 axis are checked
- Project both rectangles on each axis and check if the projections intersect

http://www.jkh.me

http://www.jkh.me

- Separating Axis Theorem
	- Two OBB do not collide if there is a separating line L on which the projection of both OBB does not intersect.
	- Test for 15 axes is sufficient to determine if such line exists:
- Collision between

faces

- 3 axes of A
- 3 axes of B

Collision between edges

- x_a $\times x_b$ \times_a $\times y_b$ \times_a $\times z_b$ • $y_a \times x_B$, $y_a \times y_B$, $y_a \times z_B$ • Z_a \times X_B , Z_a \times Y_B , Z_a \times Z_B
- 200 FLOPS max!

Using Collision Detection During a Trajectory

- If we know that a robot moves from q_A to q_B according to an parametric trajectory, how do we determine if (and where) the robot collides with an obstacle?
	- 1. Move the robot from q_A to $q_A + \Delta q$ and test for a collision between te robot and its environment
	- 2. Repeat until the robot reaches q_B
- How large should Δq be?
	- If Δq is too large we might step over thin objects
	- If Δq is tool small more tests will be used

Schwarzer 2005

- What is the relation between the initial and final distances to collision and the maximum travelling distance?
	- I start 1m away from any obstacle
	- I finish 1m away from any obstacle
	- No point on me (robot) travelled by a distance greater than 0.1m
	- Can I determine that I did not collide?

- Suppose there is a collision between the robot R and the world W when the robot moves from q_A to q_B and that the collision happens at configuration q_c
- Then let
	- *d(R(q), W)*: The shortest distance between the robot in configuration *q* and any obstacle in *W*.
	- *I(R(qA), R(qB))*: The longest distance travelled by any point on the robot as it moves from q_A^{\dagger} to q_B^{\dagger}

- Suppose there is a collision between the robot and the world at configuration q_c
- Then it must be that

d(R(q^A), W) < *l(R(q^A), R(q^C))* (1) *d(R(q^B), W)* < *l(R(q^B), R(q^C))* (2)

- 1) From q_A to q_C , there is a point that travels a greater distance than the shortest *initial* distance between the robot and the obstacle
- 2) From q_B to q_C , there is a point that travels a greater distance than the shortest *final* distance between the robot and the obstacle

- *d(R(qA), W) + d(R(qB), W) > l(R(qA),R(qB))* • If we add (1) and (2) we can determine that there is no collision between $q_{\scriptscriptstyle\mathcal{A}}$ and $q_{\scriptscriptstyle\mathcal{B}}$ if *d(R(q^A), W) + d(R(q^B), W) > l(R(q^A),R(q^B))*
- No need to find the collision configuration $q_c!$
- If the inequality is not satisfied?
	- It does not mean that there is a collision
	- $-$ Divide the trajectory $[q_A, q_B]$ in two $[q_A, q_M]$ and *[qM, q^B]* and test each of them recursively.
	- $-$ Only need to test for a collision at $q_{\scriptscriptstyle \mathcal{A}}$, $q_{\scriptscriptstyle \mathcal{B}}$ and $q_{\scriptscriptstyle \mathcal{M}}$

- If the robot is far from any obstacle and does a small motion, then $d(R(q_A), W)+d(R(q_B), W)$ is large and *l(R(q^A), R(q^B))* is small
- Therefore

d(R(q^A), W) + d(R(q^B), W) > l(R(q^A),R(q^B))

determine right away that there is no collision

• On the other hand, if $d(R(q_A), W)+d(R(q_B), W)$ is small and *l(R(q_A), R(q_B))* is large then the robot is moving close to obstacles and the trajectory must be broken down into small segments (like testing for collision)

Distance Between Two Objects

Larsen UNC 1999

- Use a hierarchy of swept sphere volumes (SSV)
	- Point Swept Volume
	- Line Swept Volume
	- Rectangular Swept Volume

Point Swept Sphere

- Computing the distance between two 3D points is easy (d = $||p_1-p_2||$)
- If you "sweep" each point with a sphere of radius r_1 and r_2 , each point becomes a sphere of radius r_1 and r_2 respectively
- Computing the distance between two spheres is easy(d= $||p_1-p_2||-r_1-r_2|$

Line Swept Sphere (LSS)

- Computing the distance between two line segments L_1 and L_2 is "easy"
- If you "sweep" each line with a sphere of radius r_1 and r_2 , each line expands by a sphere or radius r_1 and r₂ respectively
- Computing the distance between two LSS is the distance between both segments minus ${\sf r}_1$ and ${\sf r}_2$

Rectangle Swept Sphere (RSS)

- Computing the distance between two rectangles R_1 and R_2 is "easy"
- If you "sweep" each rectangle with a sphere of radius r_1 and r_2 , each rectangle expands by a sphere of radius r_1 and r_2 respectively
- Computing the distance between two RSS is the distance between both rectangles minus r_1 and r_2

Greatest Distance Traveled

- What is the point on the body's surface that travels the greatest distance from q_A to q_B ?
- Upper bound the length of the trajectory traveled by any point on the volume between configuration $q_{\overline{A}}$ and $q_{\overline{B}}$

d(R(q^A), W) + d(R(q^B), W) > O(l(R(q^A),R(q^B)))

Upper Bound on $I(R(q_A), R(q_B))$

- What is the maximum contribution of each joint to *I(R(q^A), R(q^B))*?
	- $-$ Rotate the 3D model of each link by 360 $^{\circ}$ and fit an enclosing sphere and to the data point
	- The radius of the sphere guarantees that no point on the robot will move outside the spheres
	- $-$ For a rotation Δq_i of joint *i*, no point will travel a distance greater than $r_i \Delta q_i$ because of joint *i*.

Bound the Distance Travelled by Any Point on a Robot

Algorithm COMPUTE-SPHERE (i, k)

- 1. If $i = k$ then $S(i, k+1) \leftarrow$ ENCLOSING-SPHERE(A_i)
- 2. Else $S(i, k + 1) \leftarrow$ COMPUTE-SPHERE $(i, k + 1)$
- 3. If joint k is prismatic then

Sweep $S(i, k + 1)$ along the full translational range of joint k and construct the sphere $S(i, k)$ that tightly encloses the swept volume.

4. Else if joint k is revolute then

Sweep $S(i, k + 1)$ around the axis of joint k by performing a full 2π rotation and construct the sphere $S(i, k)$ that tightly encloses the swept volume.

5. Return $S(i, k)$

$$
I(R(q_A), R(q_B)) = \sum_{k=1}^{i} R_k^{i} |q_{b,k} - q_{a,k}|
$$

Ÿ

 X

 Y

Upper Bound on *l(R(q_A)*, *R(q_B)*)

- Given a trajectory between q_A and q_B
- Given a set of sphere radius *rⁱ*

 $\Delta q = | q_B - q_A |$ *l*($R(q_A)$, $R(q_B) < \Delta q_1 r_1 + ... + \Delta q_n r_n$