Collision Detection

Simon Leonard

Hands On Resources

Computational Geometry
Computational Geometry: Algorithms
and Applications

Collision Detection
Real-Time Collision Detection

Flexible Collision Library (FCL) http://gamma.cs.unc.edu/FCL

Motion Planning

- Robot moves in configuration space
- Objects and distances are defined in Cartesian space
- Motion planning searches for collision free paths
- If a robot moves from q_A to q_B, how do you determine if it will hit anything along the way?
 - What is "the way"?
 - Reactive vs interpolated

Motion: Configuration Space Obstacles: Cartesian Space

Principles of Robot Motion

Motion: Configuration Space Obstacles: Cartesian Space

- Reactive system
 - Use sensors to avoid or mitigate contacts
 - Range finder to detect distances to obstacles
 - Bumpers/tactile sensors to detect small collisions
 - Force sensors to detect unexpected interactions
 - Use a "greedy" algorithm (like a potential field) to move toward a goal while avoiding the obstacle

- Planning system
 - Use the 3D geometry of the robot and environment to plan a path before moving
 - Find where the robot can move without colliding

Reactive Motion

- Control and sensor-based
- A robot can move in reaction to an observation
 - Typically obtained from measurements (encoders, GPS, camera, range, force, bumper, etc.)
- Given a measurement of how far the robot is from the goal, the robot takes a step toward the goal

www.dlr.de

Interpolated Motion How Robots Move?

- Parametric motion (i.e. a joint follows a polynomial trajectory)
- A robot moves according to a known equation that specifies at time varying configuration, velocity and acceleration in configuration space
 - Linear, trapezoid, quintic, etc.

Interpolated Motion

- If we know that a robot moves from q_A to q_B according to a parametric trajectory, how do we determine if (and where) the robot collides with an obstacle?
- Larger question: if an obstacle travels in space, how do we determine if (and where) it will collide?
- What if the robot and obstacle both move?

Geometry: 3D Meshes

- Collision detection between basic shapes (circles, spheres, lines, triangles and squares and 3 boxes) is fairly easy
- Complex shapes can be composed of several thousands of simple shapes and doing an exhaustive search is costly

Collision Detection

 Using basic shapes to "bound" objects is conservative

 Organize basic shapes in a hierarchy of bounding volumes

thomasdiewald.com

Hierarchy of Bounding Volumes

Bounding Volumes Hierarchy

- More complex models require hierarchies of bounding volumes
 - Spheres
 - Axis Aligned Bounding Boxes (AABB)
 - Oriented Bounding Boxes (OBB)
 - Swept Sphere Volumes (SSV)
- Unless the geometry changes, build the hierarchy once (offline)
- What makes a good bounding volume?
 - Tightness of fit
 - Speed of collision detection computation between bounding volumes

Collision Detection

- Given the hierarchies of two objects
 - Check if the top level bounding volumes collide
 - If they don't collide then the objects do not collide
 - If they collide then test for collision between the children
 - Apply recursion until we a collision is found between two primitives (triangles) or no more collision test are needed

11 collision tests

Axis Aligned Bounding Box (AABB)

- Bound the volume with a 3D box that is aligned with the X-Y-Z axis
 - Easy to build
 - Not very tight fit
 - Fast to test for collision

Oriented Bounding Box (OBB)

- Keep the vertices of the mesh's convex hull
- Find the principal axis of the vertices
 - This gives an orientation of the bounding volume
- Divide the mesh along the dominant axis

- Separating Axis Theorem
 - Two OBB do not collide if there is a separating axis
 L on which the projection of both OBB does not intersect
- How do we find this line?
 - Note that the separating line is perpendicular to the separating axis
 - A separating line exists if and only if there is a separating line that is parallel to an edge of rectangle A or B

http://www.jkh.me

- Use separating lines that are parallel to the edges of A and B
- Given that each rectangle has 2 parallel edges only 4 axis are checked
- Project both rectangles on each axis and check if the projections intersect

http://www.jkh.me

http://www.jkh.me

http://www.jkh.me

- Separating Axis Theorem
 - Two OBB do not collide if there is a separating line L on which the projection of both OBB does not intersect.
 - Test for 15 axes is sufficient to determine if such line exists:

```
Collision between faces

Collision between between edges

Such file exists.

• 3 axes of A
• 3 axes of B
• x_a \times x_B, x_a \times y_B, x_a \times z_B
• y_a \times x_B, y_a \times y_B, y_a \times z_B
• z_a \times x_B, z_a \times y_B, z_a \times z_B
```


200 FLOPS max!

Using Collision Detection During a Trajectory

- If we know that a robot moves from q_A to q_B according to an parametric trajectory, how do we determine if (and where) the robot collides with an obstacle?
 - 1. Move the robot from q_A to $q_A + \Delta q$ and test for a collision between te robot and its environment
 - 2. Repeat until the robot reaches q_B
- How large should Δq be?
 - If Δq is too large we might step over thin objects
 - If Δq is tool small more tests will be used

- What is the relation between the initial and final distances to collision and the maximum travelling distance?
 - I start 1m away from any obstacle
 - I finish 1m away from any obstacle
 - No point on me (robot) travelled by a distance greater than 0.1m
 - Can I determine that I did not collide?

- Suppose there is a collision between the robot R and the world W when the robot moves from q_A to q_B and that the collision happens at configuration q_C
- Then let
 - d(R(q), W): The shortest distance between the robot in configuration q and any obstacle in W.
 - I(R(qA), R(qB)): The longest distance travelled by any point on the robot as it moves from q_A to q_B

 $R(q_B)$

- Suppose there is a collision between the robot and the world at configuration q_c
- Then it must be that

$$d(R(q_A), W) < I(R(q_A), R(q_C)) (1)$$

 $d(R(q_B), W) < I(R(q_B), R(q_C)) (2)$

- 1) From q_A to q_C , there is a point that travels a greater distance than the shortest *initial* distance between the robot and the obstacle
- 2) From q_B to q_C , there is a point that travels a greater distance than the shortest *final* distance between the robot and the obstacle

- If we add (1) and (2) we can determine that there is no collision between q_A and q_B if $d(R(q_A), W) + d(R(q_B), W) > l(R(q_A), R(q_B))$
- No need to find the collision configuration q_c !
- If the inequality is not satisfied?
 - It does not mean that there is a collision
 - Divide the trajectory $[q_A, q_B]$ in two $[q_A, q_M]$ and $[q_M, q_B]$ and test each of them recursively.
 - Only need to test for a collision at q_A , q_B and q_M

- If the robot is far from any obstacle and does a small motion, then $d(R(q_A),W)+d(R(q_B),W)$ is large and $I(R(q_A), R(q_B))$ is small
- Therefore

$$d(R(q_A), W) + d(R(q_B), W) > l(R(q_A), R(q_B))$$

- determine right away that there is no collision
- On the other hand, if $d(R(q_A),W)+d(R(q_B),W)$ is small and $l(R(q_A), R(q_B))$ is large then the robot is moving close to obstacles and the trajectory must be broken down into small segments (like testing for collision)

Distance Between Two Objects

Larsen UNC 1999

- Use a hierarchy of swept sphere volumes (SSV)
 - Point Swept Volume
 - Line Swept Volume
 - Rectangular Swept Volume

Point Swept Sphere

- Computing the distance between two 3D points is easy (d = || p₁-p₂||)
- If you "sweep" each point with a sphere of radius r₁ and r₂, each point becomes a sphere of radius r₁ and r₂ respectively
- Computing the distance between two spheres is easy($d = || p_1-p_2||-r_1-r_2$)

Line Swept Sphere (LSS)

- Computing the distance between two line segments L₁ and L₂ is "easy"
- If you "sweep" each line with a sphere of radius r₁ and r₂, each line expands by a sphere or radius r₁ and r₂ respectively
- Computing the distance between two LSS is the distance between both segments minus r₁ and r₂

Rectangle Swept Sphere (RSS)

- Computing the distance between two rectangles R₁ and R₂ is "easy"
- If you "sweep" each rectangle with a sphere of radius r₁ and r₂, each rectangle expands by a sphere of radius r₁ and r₂ respectively
- Computing the distance between two RSS is the distance between both rectangles minus r₁ and r₂

Greatest Distance Traveled

- What is the point on the body's surface that travels the greatest distance from q_A to q_B ?
- Upper bound the length of the trajectory traveled by any point on the volume between configuration q_A and q_B

 $d(R(q_A), W) + d(R(q_B), W) > O(I(R(q_A), R(q_B)))$

Upper Bound on $I(R(q_A), R(q_B))$

- What is the maximum contribution of each joint to $I(R(q_A), R(q_B))$?
 - Rotate the 3D model of each link by 360° and fit an enclosing sphere and to the data point
 - The radius of the sphere guarantees that no point on the robot will move outside the spheres
 - For a rotation Δq_i of joint i, no point will travel a distance greater than $r_i \Delta q_i$ because of joint i.

Bound the Distance Travelled by Any Point on a Robot

Algorithm COMPUTE-SPHERE(i, k)

- If i = k then S(i, k+1) ← ENCLOSING-SPHERE(A_i)
- 2. Else $S(i, k + 1) \leftarrow \text{COMPUTE-SPHERE}(i, k + 1)$
- If joint k is prismatic then

Sweep S(i, k + 1) along the full translational range of joint k and construct the sphere S(i, k) that tightly encloses the swept volume.

- Else if joint k is revolute then
 Sweep S(i, k + 1) around the axis of joint k by performing a full 2π rotation and construct the sphere S(i, k) that tightly encloses the swept volume.
- 5. Return S(i, k)

Schwarzer 2005

$$I(R(q_A), R(q_B)) = \sum_{k=1}^{t} R_k^i |q_{b,k} - q_{a,k}|$$

Upper Bound on $I(R(q_A), R(q_B))$

- Given a trajectory between q_A and q_B
- Given a set of sphere radius r_i

$$\Delta q = | q_B - q_A |$$

$$I(R(q_A), R(q_B) < \Delta q_1 r_1 + ... + \Delta q_n r_n$$