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Abstract— Demand in the consumer market for graphics 
hardware that accelerates rendering of 3D images has resulted in 
Graphic Cards that are capable of delivering astonishing levels of 
performance. These results were achieved by specifically 
tailoring the hardware for the target domain. As graphics 
accelerators become increasingly programmable however, this 
performance has made them an attractive target for other 
domains. Graphic processing units provide a low-cost parallel 
computing architecture. It is possible to achieve massive 
parallelism by SIMD (Single Instruction Multiple Data) on 
General Purpose Graphics Processing Unit (GPGPU) integrated 
with Central Processing Unit (CPU). 
 
 In this implementation, Normal Equation Algorithm is 
used to achieve parallelism in data regression on a set of data 
given using a programming model, Compute Unified Device 
Architecture (CUDA) which uses multithreading technique. 
Normal Equation is one of the algorithms to predict, forecast, 
mine huge amount of data. Normal Equation using CUDA can 
achieve high performance. Here, Normal Equation is 
implemented on Graphics Processing Unit (GPU) and on CPU to 
process given datasets for prediction of patterns by finding 
weights of the Regression model. The time spent for computation 
is compared in both the cases. 
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I.  INTRODUCTION 
 Files with huge amount of data sets consume 
enormous amount of time to process on CPU. It is time 
consuming to perform many operations on it thereby resulting 
in degradation of performance. CUDA is such a programming 
model by which performance in terms of time for any 
computation is improved [4]. 
 Machine learning technique analyses the relationship 
between the two variables, X and Y [1]. For each subject, both 
X and Y are known and we want to find the straight line that 
fits best through the mass of data. We have a lot of 
applications of this model. In some scenario, the slope and 
intercept of the line might have scientific meaning. In other 
cases, the resulting fitted model can be used to summarize the 
data, to predict unobserved values from the same system, and 
to understand the mechanisms that may underlie the system. 

These algorithms produce the slope of a line that best fits a 
single set of data points [3]. Suppose if we have four data 
points (2,3), (1,5), (3,9), and (7,6), then it is desired to find a 
line      y = Θ1+ Θ2 x that fits best these four given points. In 
other words, we would like to find the numbers Θ1 and Θ2 that 
approximately solves the over determined linear system of 
four equations in two unknowns in some best sense.  
 
 Θ1 + 2 Θ2 = 3 
 Θ1 + 1 Θ2 = 5 
 Θ1 + 3 Θ2 = 9 
 Θ1 + 7 Θ2 = 6 
 
The framework on machine learning concepts contains the 
following three components 

1. Model class 
2. Score function 
3. Optimization/Search process. 

The model class and score function are decided on the basis of 
rating different instances of selected model class. The 
aforementioned instances are provided by the optimization or 
search process. The optimization/search process using linear 
regression is an iterative algorithm that gradually descends 
down the gradient of the cost function, and generates 
parameters defining a new instance of our selected model class 
[6]. In the case of Linear regression the least square approach 
to solve this problem is trying to minimize the sum of squares 
of errors between X and Y, i.e. to find the minimum of the 
function 
 
S ( Θ1 ,  Θ2 ) = [3-( Θ1 + 2 Θ2 )2] + [5-( Θ1 + 1 Θ2 )2] 
               + [9-( Θ1 + 3 Θ2 )2] + [3-( Θ1 + 2 Θ2 )2] 
 
 The minimum of this function could be found by 
differentiating it partially with respect to  Θ1 and Θ2 and setting 
them to zero. This results in the system of two equations in 
two unknowns where the value of theta is computed iteratively 
by minimizing the cost function S ( Θ1 ,  Θ2 )  . 
 Normal Equations, using linear algebra, could have 
our optimization/search process generate the optimal instance 
of our model class in one try. The Θ is computed by the                 
following equation: 
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  Θ = (XTX)-1XTY 
There are essentially two problems in linear algebra: 
 

1. Ax = y 
2. Ax = λx 

 
 Ax = y is a compact notation for describing a system 
of linear equations, which in general is either consistent (it has 
at least one solution) or not (it has no solution). There are 
several methods for solving systems of linear equation that are 
consistent, but for that aren’t, we attempt to find the best 
approximate solution x; the one in which Euclidean length of 
the so called residual vector (r = y-Ax) is as close to zero as 
possible: 
 
 x = minx | |y-Ax| | 

 
         Fig 1. System of Linear Equations 
 
 Imagine we have a system of linear equations (as 
shown in Fig. 1) with parameter vector x=[x1; x2], such that 
the space spanned by Sp{x:[x1;x2;z=0], for all x1 and x2} is 
the range of our matrix A for all x, R(A).         
 Vector ‘y’ in Fig. (1), which is our observed target 
vector in Ax = y, is clearly not in R(A). Nevertheless, there is 
among all the vectors in R(A), one that is closest to y, which 
we denote to be ŷ. So, rather than finding the parameter vector 
x which satisfies Ax = y (something we obviously cannot do), 
we will find the parameter vector x such that Ax = ŷ, which is 
the closest we can get to y. 
 Examining the diagram, our geometric intuition 
suggests that the vector y-ŷ is orthogonal to every vector in the 
range of A, and since the columns of A form a spanning set for 
the range of A, Sp{A1,A2}=R(A), the dot product of each of 
those columns with y-ŷ should equal zero: 
 
 A1T(y- ŷ) = 0 ; and ; 
 A2T(y- ŷ) = 0 
In matrix-vector notation: 
 
 AT(y- ŷ) = 0 

 Now, since ŷ = Aw for some w in our space 
Sp{x:[x1;x2;z=0], for all x1 and x2}, we have that: 
 
 AT(y- Aw) = 0 
 
Or, in more familiar form or the Normal Equation: 

 
 ATAw = ATy 
 

And so we can solve for w in closed form: 
 

 w = (ATA)-1ATy 
 
The constraint of normal equations is that (XTX)-1be an 
invertible matrix [6]. This minimization problem has a unique 
solution, provided that the n columns of the matrix X are 
linearly independent, given by solving the normal equations. 
The main contributions of this paper are as follows: 
 
1. We have analyzed the characteristics of Normal Equation. 
We found that it is better to implement it on GPU to improve 
performance. 
 
2. We have computed the Θ value for the given X and Y 
values using Normal Equation Algorithm. 
  
3. We have selected Normal Equation algorithm for parallel 
implementation on GPU and performance is compared on 
CPU. 
 
4. We have analyzed that the Normal equation method is less 
costly as compared to Linear Regression technique because we 
don’t need to choose learning rate ‘α’ in case of Normal 
Equations technique as we don’t have to iterate and find the 
best fitting values as in case of linear regression method. 
 
5. We have also analyzed that Normal Equations 
implementation using GPU can effectively be used for a 
greater number of features in the dataset. 
 

II. RELATED WORK 
 GPUs that are available now-a-days provide high 
computation power at low costs and have been described as 
desktop supercomputers [5]. They are capable of performing 
massively parallel operations using CUDA threads. The GPUs 
have been used for many general purpose computations due to 
their low cost, high computing power, and high availability. 
The latest GPUs, for instance, can deliver close to 1 Tera 
Flops (TFLOPs) of compute power at a higher cost. The stages 
of were exploited for parallelism with the flow of execution 
handled serially using the pipeline in the earlier, GPGPU 
model. The GPUs expose a general, data-parallel 
programming model today in the form of CUDA. The recently 
adopted OpenCL standard will provide a common computing 
model to not only all GPUs, but also to other platforms like 
multi-core, many-core, and Cell/B.E. CUDA from NVIDIA 
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presents a heterogeneous programming model where the 
parallel hardware can be used in conjunction with the CPU 
[2],[4]. In conjunction with a CPU, it can be used as Bulk 
Synchronous Parallel (BSP) hardware with the CPU deciding 
the barrier for synchronization. GPU programming models are 
constrained in such a way that the compiler and runtime can 
reason about the application and extract the parallelism 
automatically. Examples of this include DirectX, CUDA, and 
Cg. Intel architecture is more general purpose than GPU and 
other coprocessor architecture. Unlike GPUs, Intel 
architectures have: 
  
1) Inter-core communication through substantial, coherent 
cache hierarchies. 
 
2) Efficient, low latency thread synchronizations across the 
entire processor array. 
  
3) Narrower effective SIMD width.  

 
At a high level, the goal is to define a constrained 

programming model that efficiently and portably targets highly 
parallel general purpose cores, such as Intel multi-core and 
Tera-scale systems. There are different ways to classify parallel 
computers. One of the more widely used classifications, in use 
since 1966, is called Flynn's Taxonomy. Flynn's taxonomy 
distinguishes multi-processor computer architectures according 
to how they can be classified along the two independent 
dimensions of Instruction and Data. Each of these dimensions 
can have only one of two possible states: Single or Multiple. 
GPU based processors can efficiently perform floating point 
operations and use parallelism at massive levels due to which 
they can be a suitable choice for processing large amounts of 
data. 

III. ANALYSIS OF NORMAL EQUATION 
In the paradigm of mathematics, the normal equation 

technique is an approach to fitting a mathematical model to 
data in cases where the idealized value provided by the model 
for any data point is expressed linearly in terms of the unknown 
parameters of the models.  

 
Fig. 2. A plot of the data points (in red), the line of best fit  

       (in blue), and the residuals (in green). 

Figure (2) shows the line which best fits the four points that 
are shown in the graph (red dots). This line is determined by 
using Normal Equation technique. The x and y co-ordinate 
values of points shown in the figure are used to construct the 
‘X’ and ‘Y’ matrices that are used to calculate  Θ.  
 
This concept can also be applied even if we have more number 
of variables. If there are ‘m’ number of training sets and ‘n’ 
number of features (multiple variables) involved with each 
sets, then the  is computed as follows: 
 
 X=[ x1T  x2

T x3
T x4

T …. Xn
T] T 

 
 Y=[ y(1)  y(2)  y(3)  y(4) …. y(m)] T 

 
  Θ = (XTX)-1XTY 

 
For example, consider the following tables: 
                   TABLE I : values of x0, x1 and x2. 

 
 

x0 

Size (feet2) 

 

x1 

Number of 
Bedrooms 

x2 

1 2104 5 

1 1416 3 

1 1534 3 

1 852 2 

 
                            TABLE II : values of x3, x4 and y. 

Number of 
Floors 

x3 

Age of home 
(years) 

x4 

Price($1000) 
 

y 

1 45 460 

2 40 232 

2 30 315 

1 36 178 
 

Here  

x0
T = [ 1   1   1   1  ] 

x1
T = [ 2104   1416   1534   852  ] 

x2
T = [ 5   3   3   2  ] 

x3
T = [ 1   2   2   1  ] 

x4
T = [ 45   40   30   36  ] 

 

Therefore, X = [ x0
T  x1

T  x2
T  x3

T  x4
T  ] 
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and Y = [ 460   232   315   178 ]T 

The Θ is then calculated using the above mentioned 
formula. 

The advantages of using Normal Equation technique over 
linear regression technique in calculating  Θ are as follows: 

1. We don’t need to choose learning rate (α). 

2. We don’t need to perform too much iteration as it is 
done in the case of linear regression [1]. 

IV. RESULT AND DISCUSSIONS 
A performance analysis of matrix product timing, matrix 

transpose and matrix inversion timing is done over both CPU 
as well as GPU and the results are shown in the following 
graphs. 

 

 
Fig. 3. The performance analysis of time taken by CPU vs time 

 taken by GPU for performing Matrix Transpose operation. 

 

 
Fig. 4. The performance analysis of time taken by CPU vs time 

 taken by GPU for performing Matrix Multiplication 
 operation. 

 

 

 
Fig. 5. The performance analysis of time taken by CPU vs time 

 taken by GPU for performing Matrix Inverse operation 
 (small dimension matrices). 

 

 
Fig. 6. The performance analysis of time taken by CPU vs time 

 taken by GPU for performing Matrix Inverse operation 
 (large dimension matrices). 

Figure (3) shows the time taken by CPU in performing 
Matrix Transpose operation with respect to that of time taken 
by GPU in doing the same. The number of data points used is 
shown on x-axis and time taken per iteration is shown on y-
axis. From the figure, we can infer that for small number of 
points, CPU takes less time as compared to GPU. But as the 
number of data point increases, the GPU takes less amount of 
time in performing matrix transpose as compared to CPU.   

Figure (4) shows the time taken by CPU in performing 
Matrix Product operation with respect to that of time taken by 
GPU in doing the same. The number of data points used is 
shown on x-axis and time taken per iteration is shown on y-
axis. It can be inferred from the graph that initially the 
performance of CPU is better as compared to that of GPU 
when there are less number of data points. As the number of 
data points increases, the GPU takes less time in comparison to 
that with CPU in performing the Matrix Multiplication 
operation. 
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Figure (5) shows the time taken by CPU in performing 
Matrix Product operation with respect to that of time taken by 
GPU in doing the same for smaller dimension matrices 
(dimensions of matrix varies from 32x32 to 256x256). The 
dimension of matrix used is shown on x-axis and time taken is 
shown on y-axis. It can be inferred from the graph that 
performance of GPU is better as compared to that of CPU.  

Figure (6) shows the time taken by CPU in performing 
Matrix Product operation with respect to that of time taken by 
GPU in doing the same for larger dimension matrices 
(dimensions of matrix varies from 512x512 to 1024x1024). 
The dimension of matrix used is shown on x-axis and time 
taken is shown on y-axis. It can be inferred from the graph that 
performance of GPU is better as compared to that of CPU. 

From Figure (3), (4), (5) and (6), it can be inferred that  
Matrix Multiplication, Matrix Transpose operation and Matrix 
Inverse operation take less time on GPU when compared with 
CPU. Therefore the Normal Equation algorithm will take less 
time in computing the result if it is implemented over GPU 
instead of CPU.  

Further this algorithm can be improved if we use CUDA 
Basic Linear Algebra Subroutines (CUBLAS) while 
performing Matrix Transpose and Matrix Multiplication. 

V. CONCLUSION 
 Data regression by Normal Equation on GPU using 
CUDA is implemented on NVIDIA Graphics Processing Unit 
integrated with Central Processing Unit. It is observed that the 
multithreading architecture and SIMD approach of CUDA 
helps for performance improvement in a great sense. There is 
tremendous difference in the results obtained on CPU and on 
GPU. So, CUDA programming is one of the best approaches 
to optimize the time for various algorithms which require huge 
amount of data, and is further suitable for operations which 
require floating point arithmetic. Therefore, GPUs can be used 
to run Machine Learning algorithms efficiently, with their 

capabilities to handle floating point arithmetic and big data as 
well. 
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