
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.2, April 2012

 418

Data Regression with Normal Equation on GPU using
CUDA

Vaibhav Mohan
School of Information Technology and Engineering

Vellore Institute of Technology
Vellore, India

Mayank Gupta
School of Information Technology and Engineering

Vellore Institute of Technology
Vellore, India

Abstract— Demand in the consumer market for graphics
hardware that accelerates rendering of 3D images has resulted in
Graphic Cards that are capable of delivering astonishing levels of
performance. These results were achieved by specifically
tailoring the hardware for the target domain. As graphics
accelerators become increasingly programmable however, this
performance has made them an attractive target for other
domains. Graphic processing units provide a low-cost parallel
computing architecture. It is possible to achieve massive
parallelism by SIMD (Single Instruction Multiple Data) on
General Purpose Graphics Processing Unit (GPGPU) integrated
with Central Processing Unit (CPU).

 In this implementation, Normal Equation Algorithm is
used to achieve parallelism in data regression on a set of data
given using a programming model, Compute Unified Device
Architecture (CUDA) which uses multithreading technique.
Normal Equation is one of the algorithms to predict, forecast,
mine huge amount of data. Normal Equation using CUDA can
achieve high performance. Here, Normal Equation is
implemented on Graphics Processing Unit (GPU) and on CPU to
process given datasets for prediction of patterns by finding
weights of the Regression model. The time spent for computation
is compared in both the cases.

Keywords- Central Processing Unit; Graphics Processing Unit;
Normal Equations; CUDA; Multithreading.

I. INTRODUCTION
 Files with huge amount of data sets consume
enormous amount of time to process on CPU. It is time
consuming to perform many operations on it thereby resulting
in degradation of performance. CUDA is such a programming
model by which performance in terms of time for any
computation is improved [4].
 Machine learning technique analyses the relationship
between the two variables, X and Y [1]. For each subject, both
X and Y are known and we want to find the straight line that
fits best through the mass of data. We have a lot of
applications of this model. In some scenario, the slope and
intercept of the line might have scientific meaning. In other
cases, the resulting fitted model can be used to summarize the
data, to predict unobserved values from the same system, and
to understand the mechanisms that may underlie the system.

These algorithms produce the slope of a line that best fits a
single set of data points [3]. Suppose if we have four data
points (2,3), (1,5), (3,9), and (7,6), then it is desired to find a
line y = Θ1+ Θ2 x that fits best these four given points. In
other words, we would like to find the numbers Θ1 and Θ2 that
approximately solves the over determined linear system of
four equations in two unknowns in some best sense.

 Θ1 + 2 Θ2 = 3
 Θ1 + 1 Θ2 = 5
 Θ1 + 3 Θ2 = 9
 Θ1 + 7 Θ2 = 6

The framework on machine learning concepts contains the
following three components

1. Model class
2. Score function
3. Optimization/Search process.

The model class and score function are decided on the basis of
rating different instances of selected model class. The
aforementioned instances are provided by the optimization or
search process. The optimization/search process using linear
regression is an iterative algorithm that gradually descends
down the gradient of the cost function, and generates
parameters defining a new instance of our selected model class
[6]. In the case of Linear regression the least square approach
to solve this problem is trying to minimize the sum of squares
of errors between X and Y, i.e. to find the minimum of the
function

S (Θ1 , Θ2) = [3-(Θ1 + 2 Θ2)2] + [5-(Θ1 + 1 Θ2)2]
 + [9-(Θ1 + 3 Θ2)2] + [3-(Θ1 + 2 Θ2)2]

 The minimum of this function could be found by
differentiating it partially with respect to Θ1 and Θ2 and setting
them to zero. This results in the system of two equations in
two unknowns where the value of theta is computed iteratively
by minimizing the cost function S (Θ1 , Θ2) .
 Normal Equations, using linear algebra, could have
our optimization/search process generate the optimal instance
of our model class in one try. The Θ is computed by the
following equation:

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.2, April 2012

 419

 Θ = (XTX)-1XTY
There are essentially two problems in linear algebra:

1. Ax = y
2. Ax = λx

 Ax = y is a compact notation for describing a system
of linear equations, which in general is either consistent (it has
at least one solution) or not (it has no solution). There are
several methods for solving systems of linear equation that are
consistent, but for that aren’t, we attempt to find the best
approximate solution x; the one in which Euclidean length of
the so called residual vector (r = y-Ax) is as close to zero as
possible:

 x = minx | |y-Ax| |

 Fig 1. System of Linear Equations

 Imagine we have a system of linear equations (as
shown in Fig. 1) with parameter vector x=[x1; x2], such that
the space spanned by Sp{x:[x1;x2;z=0], for all x1 and x2} is
the range of our matrix A for all x, R(A).
 Vector ‘y’ in Fig. (1), which is our observed target
vector in Ax = y, is clearly not in R(A). Nevertheless, there is
among all the vectors in R(A), one that is closest to y, which
we denote to be ŷ. So, rather than finding the parameter vector
x which satisfies Ax = y (something we obviously cannot do),
we will find the parameter vector x such that Ax = ŷ, which is
the closest we can get to y.
 Examining the diagram, our geometric intuition
suggests that the vector y-ŷ is orthogonal to every vector in the
range of A, and since the columns of A form a spanning set for
the range of A, Sp{A1,A2}=R(A), the dot product of each of
those columns with y-ŷ should equal zero:

 A1T(y- ŷ) = 0 ; and ;
 A2T(y- ŷ) = 0
In matrix-vector notation:

 AT(y- ŷ) = 0

 Now, since ŷ = Aw for some w in our space
Sp{x:[x1;x2;z=0], for all x1 and x2}, we have that:

 AT(y- Aw) = 0

Or, in more familiar form or the Normal Equation:

 ATAw = ATy

And so we can solve for w in closed form:

 w = (ATA)-1ATy

The constraint of normal equations is that (XTX)-1be an
invertible matrix [6]. This minimization problem has a unique
solution, provided that the n columns of the matrix X are
linearly independent, given by solving the normal equations.
The main contributions of this paper are as follows:

1. We have analyzed the characteristics of Normal Equation.
We found that it is better to implement it on GPU to improve
performance.

2. We have computed the Θ value for the given X and Y
values using Normal Equation Algorithm.

3. We have selected Normal Equation algorithm for parallel
implementation on GPU and performance is compared on
CPU.

4. We have analyzed that the Normal equation method is less
costly as compared to Linear Regression technique because we
don’t need to choose learning rate ‘α’ in case of Normal
Equations technique as we don’t have to iterate and find the
best fitting values as in case of linear regression method.

5. We have also analyzed that Normal Equations
implementation using GPU can effectively be used for a
greater number of features in the dataset.

II. RELATED WORK
 GPUs that are available now-a-days provide high
computation power at low costs and have been described as
desktop supercomputers [5]. They are capable of performing
massively parallel operations using CUDA threads. The GPUs
have been used for many general purpose computations due to
their low cost, high computing power, and high availability.
The latest GPUs, for instance, can deliver close to 1 Tera
Flops (TFLOPs) of compute power at a higher cost. The stages
of were exploited for parallelism with the flow of execution
handled serially using the pipeline in the earlier, GPGPU
model. The GPUs expose a general, data-parallel
programming model today in the form of CUDA. The recently
adopted OpenCL standard will provide a common computing
model to not only all GPUs, but also to other platforms like
multi-core, many-core, and Cell/B.E. CUDA from NVIDIA

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.2, April 2012

 420

presents a heterogeneous programming model where the
parallel hardware can be used in conjunction with the CPU
[2],[4]. In conjunction with a CPU, it can be used as Bulk
Synchronous Parallel (BSP) hardware with the CPU deciding
the barrier for synchronization. GPU programming models are
constrained in such a way that the compiler and runtime can
reason about the application and extract the parallelism
automatically. Examples of this include DirectX, CUDA, and
Cg. Intel architecture is more general purpose than GPU and
other coprocessor architecture. Unlike GPUs, Intel
architectures have:

1) Inter-core communication through substantial, coherent
cache hierarchies.

2) Efficient, low latency thread synchronizations across the
entire processor array.

3) Narrower effective SIMD width.

At a high level, the goal is to define a constrained

programming model that efficiently and portably targets highly
parallel general purpose cores, such as Intel multi-core and
Tera-scale systems. There are different ways to classify parallel
computers. One of the more widely used classifications, in use
since 1966, is called Flynn's Taxonomy. Flynn's taxonomy
distinguishes multi-processor computer architectures according
to how they can be classified along the two independent
dimensions of Instruction and Data. Each of these dimensions
can have only one of two possible states: Single or Multiple.
GPU based processors can efficiently perform floating point
operations and use parallelism at massive levels due to which
they can be a suitable choice for processing large amounts of
data.

III. ANALYSIS OF NORMAL EQUATION
In the paradigm of mathematics, the normal equation

technique is an approach to fitting a mathematical model to
data in cases where the idealized value provided by the model
for any data point is expressed linearly in terms of the unknown
parameters of the models.

Fig. 2. A plot of the data points (in red), the line of best fit

 (in blue), and the residuals (in green).

Figure (2) shows the line which best fits the four points that
are shown in the graph (red dots). This line is determined by
using Normal Equation technique. The x and y co-ordinate
values of points shown in the figure are used to construct the
‘X’ and ‘Y’ matrices that are used to calculate Θ.

This concept can also be applied even if we have more number
of variables. If there are ‘m’ number of training sets and ‘n’
number of features (multiple variables) involved with each
sets, then the is computed as follows:

 X=[x1T x2

T x3
T x4

T …. Xn
T] T

 Y=[y(1) y(2) y(3) y(4) …. y(m)] T

 Θ = (XTX)-1XTY

For example, consider the following tables:
 TABLE I : values of x0, x1 and x2.

x0

Size (feet2)

x1

Number of
Bedrooms

x2

1 2104 5

1 1416 3

1 1534 3

1 852 2

 TABLE II : values of x3, x4 and y.

Number of
Floors

x3

Age of home
(years)

x4

Price($1000)

y

1 45 460

2 40 232

2 30 315

1 36 178

Here

x0
T = [1 1 1 1]

x1
T = [2104 1416 1534 852]

x2
T = [5 3 3 2]

x3
T = [1 2 2 1]

x4
T = [45 40 30 36]

Therefore, X = [x0
T x1

T x2
T x3

T x4
T]

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.2, April 2012

 421

and Y = [460 232 315 178]T

The Θ is then calculated using the above mentioned
formula.

The advantages of using Normal Equation technique over
linear regression technique in calculating Θ are as follows:

1. We don’t need to choose learning rate (α).

2. We don’t need to perform too much iteration as it is
done in the case of linear regression [1].

IV. RESULT AND DISCUSSIONS
A performance analysis of matrix product timing, matrix

transpose and matrix inversion timing is done over both CPU
as well as GPU and the results are shown in the following
graphs.

Fig. 3. The performance analysis of time taken by CPU vs time

 taken by GPU for performing Matrix Transpose operation.

Fig. 4. The performance analysis of time taken by CPU vs time

 taken by GPU for performing Matrix Multiplication
 operation.

Fig. 5. The performance analysis of time taken by CPU vs time

 taken by GPU for performing Matrix Inverse operation
 (small dimension matrices).

Fig. 6. The performance analysis of time taken by CPU vs time

 taken by GPU for performing Matrix Inverse operation
 (large dimension matrices).

Figure (3) shows the time taken by CPU in performing
Matrix Transpose operation with respect to that of time taken
by GPU in doing the same. The number of data points used is
shown on x-axis and time taken per iteration is shown on y-
axis. From the figure, we can infer that for small number of
points, CPU takes less time as compared to GPU. But as the
number of data point increases, the GPU takes less amount of
time in performing matrix transpose as compared to CPU.

Figure (4) shows the time taken by CPU in performing
Matrix Product operation with respect to that of time taken by
GPU in doing the same. The number of data points used is
shown on x-axis and time taken per iteration is shown on y-
axis. It can be inferred from the graph that initially the
performance of CPU is better as compared to that of GPU
when there are less number of data points. As the number of
data points increases, the GPU takes less time in comparison to
that with CPU in performing the Matrix Multiplication
operation.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No.2, April 2012

 422

Figure (5) shows the time taken by CPU in performing
Matrix Product operation with respect to that of time taken by
GPU in doing the same for smaller dimension matrices
(dimensions of matrix varies from 32x32 to 256x256). The
dimension of matrix used is shown on x-axis and time taken is
shown on y-axis. It can be inferred from the graph that
performance of GPU is better as compared to that of CPU.

Figure (6) shows the time taken by CPU in performing
Matrix Product operation with respect to that of time taken by
GPU in doing the same for larger dimension matrices
(dimensions of matrix varies from 512x512 to 1024x1024).
The dimension of matrix used is shown on x-axis and time
taken is shown on y-axis. It can be inferred from the graph that
performance of GPU is better as compared to that of CPU.

From Figure (3), (4), (5) and (6), it can be inferred that
Matrix Multiplication, Matrix Transpose operation and Matrix
Inverse operation take less time on GPU when compared with
CPU. Therefore the Normal Equation algorithm will take less
time in computing the result if it is implemented over GPU
instead of CPU.

Further this algorithm can be improved if we use CUDA
Basic Linear Algebra Subroutines (CUBLAS) while
performing Matrix Transpose and Matrix Multiplication.

V. CONCLUSION
 Data regression by Normal Equation on GPU using
CUDA is implemented on NVIDIA Graphics Processing Unit
integrated with Central Processing Unit. It is observed that the
multithreading architecture and SIMD approach of CUDA
helps for performance improvement in a great sense. There is
tremendous difference in the results obtained on CPU and on
GPU. So, CUDA programming is one of the best approaches
to optimize the time for various algorithms which require huge
amount of data, and is further suitable for operations which
require floating point arithmetic. Therefore, GPUs can be used
to run Machine Learning algorithms efficiently, with their

capabilities to handle floating point arithmetic and big data as
well.

REFERENCES
[1] Andrew, “Machine learning, Linear Regression with multiple

variables”.

[2] Brooks Moses, Don McCoy, Justin Voo, Stefan Seefeld CodeSourcery,
Incorporation, ”Comparison of Multicore Processors
using Sourcery VSIPL++” .

[3] Jyoti B. Kulkarni, A. A. Sawant, Vandana S. Inamdar, “Database
Processing by Linear Regression on GPU using CUDA”, 2011,
Proceedings of the ICSCCN 2011, IEEE International Conference,
Pg 20-23.

[4] “Getting started with CUDA”, www.nvidia.com.

[5] “Programming with CUDA”, www.nvidia.com.

[6] “Linear Regression- Normal Equations”, http://mechanistician.blogspot.in

[7] David B. Kirk, Wen-mei W. Hwu, “ Programming Massively Parallel

Processors”.

AUTHORS PROFILE
Vaibhav Mohan is currently pursuing his undergraduate studies from Vellore
Institute of Technology and is currently in final year of his bachelor of
Technology course. His area of interest is algorithms, code optimizations, soft
computing, parallel computing and parallel algorithms.

Mayank Gupta is a final year student at Vellore Institute of Technology in
Bachelor of technology program. His area of interest is algorithms, code
optimizations, soft computing, and parallel algorithms.

