
Cassandra
Overview
Nick Carey, Vaibhav Mohan, Shaojie
Chen, Ethan Holly

Some Cassandra Users

source: Cassandra at NoSql Matters 2012 from jbellis

http://www.slideshare.net/jbellis/cassandra-at-nosql-matters-2012
http://www.slideshare.net/jbellis

Industries & Use Cases
● Financial
● Social Media
● Advertising
● Entertainment
● Energy
● E-tail
● Health care
● Government
● Ad tracking

● Time series data
● Messaging
● Data mining
● User activity

streams
● User sessions
● Anything requiring

scalable performant +
highly available
source: Cassandra at NoSql Matters 2012 from

jbellis

http://www.slideshare.net/jbellis/cassandra-at-nosql-matters-2012
http://www.slideshare.net/jbellis
http://www.slideshare.net/jbellis

Architecture - Implements
BigTable Data Model

Source: http://1.bp.blogspot.com/_j6mB7TMmJJY/TK1npAatLqI/AAAAAAAAAd4/TscPInSeUoo/s400/p1.png

Cassandra does
this one!

Column-Families

Tables

http://1.bp.blogspot.com/_j6mB7TMmJJY/TK1npAatLqI/AAAAAAAAAd4/TscPInSeUoo/s400/p1.png

Architecture - P2P, DHT
● Uses Chord-like distributed hash table for

distributing keys among nodes.

● Data is stored redundantly across multiple
nodes.

Architecture - CAP
Tradeoffs
● Values AP; Consistency/latency tradeoff tunable
● What does Cassandra do with queries in the case of a

network partition/node failure?
○ Behavior can be specified per operation with

keywords in CQL (Cassandra Query Language)
○ ONE keyword used to request some instance of the

datum, regardless of whether it is consistent with
other versions

○ QUORUM keyword used to request value that most
nodes agree on

○ ALL keyword used to require consistency

Source:http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

Architecture - CAP
Tradeoffs
● It is possible to ensure consistency without requiring

complete ACKs on all operations.

○ Writes with ALL, Reads with ONE

OR

○ Writes with ONE, Reads with ALL

OR

○ Writes with QUORUM, Reads with QUORUM

● Why is this useful?
Source: http://1.bp.blogspot.com/_j6mB7TMmJJY/TK1npAatLqI/AAAAAAAAAd4/TscPInSeUoo/s400/p1.png

http://1.bp.blogspot.com/_j6mB7TMmJJY/TK1npAatLqI/AAAAAAAAAd4/TscPInSeUoo/s400/p1.png

Setting up Cassandra
● We first created a special security group for Cassandra

Setting up Cassandra
● We then spun up 1,2,4,8 instances of M1 Large

instance
● We used the AMI located on the following page:https:

//aws.amazon.com/amis/datastax-auto-clustering-ami-2-2
● parameters while launching AMI : --clustername

cassandra --totalnodes #Num_nodes --version
community

● We used cassandra cli for creating keyspace and
column family.

● We used cql and python to interact with cassandra.

https://aws.amazon.com/amis/datastax-auto-clustering-ami-2-2
https://aws.amazon.com/amis/datastax-auto-clustering-ami-2-2
https://aws.amazon.com/amis/datastax-auto-clustering-ami-2-2

Working With Cassandra
● Adding New Nodes On-the-Fly

○ It is possible to add nodes to Cassandra on-the-fly,
but the server must be configured for this on
initialization. Additionally, each node must have it’s
own pre-calculated ‘initial_token’ parameter.

○ We decided just to start our clusters of various
nodes separately.

● Downsides We Encountered:
○ No auto-incrementing keys
○ Must choose either load-balancing or sorted key

indexing. Can’t have both.

Performance Benchmarks -
Experiment Set Up
● Dependent variables: time it took cassandra

to write/read 100000 key-value pairs
● Independent variables:

a. read/write to database
b. number of client threads issuing queries

simultaneously. Note that client threads are
evenly spaced out over available machines
in cassandra cluster

c. number of machines in cassandra cluster
d. length/size of value being inserted, length is in bytes

Performance Benchmarks -
Experiment Set Up
● Control variables:

a. Each benchmark read/wrote 100000 key-value pairs
b. At the start of write benchmark, there were 0 existing rows in the
 Cassandra database
c. At the start of a read benchmark, there were always 100000 existing
 rows in the Cassandra database
d. key accesses or key reads is always done in random order. While

 Cassandra does support ordered indices on keys, they heavily
 recommended against using them and by default Cassandra uses an
 unordered key index
e. 0 Net partitions
f. row access

Performance Benchmarks
● See at our graphs!

Performance Benchmarks -
Sequential vs. Random Reads
● We did not expect to see a performance difference

here. While Cassandra does support sequential
indexing of keys, it would not balance the data across
multiple nodes. Thus, we used the default setting of
random key indexing.

● Because keys are indexed randomly, even if we queried
them in order, we expect the actual database lookups to
be random.

