
PostgreSQL and PL/Python
Daniel Swann

Matt Small
Ethan Holly

 Vaibhav Mohan

● Amazon AWS 64-bit CentOS large instance
○ 8GB RAM
○ 800GB storage volume

● Installed Postgres, PL/Python, and psycopg2 for Python <> Postgres
communication

Our Instance

● ORDBMS
● Transactional, ACID, SQL:2011
● Doesn’t employ Parallel Processing (like greenplum)
● Available for many platforms including Linux, FreeBSD, windows and Mac

OS X

What is PostgreSQL?

● Madlib is a library for scaled database analytics
○ However, it could not process 2D arrays for matrix multiplication
○ Decided to use PL/Python instead for in-database operations

● Madlib needed 4.1 or greater version of Greenplum to function
○ 2.5 was the only free version available
○ Therefore, we decided against creating a Greenplum cluster

MadLib and GreenPlum

● Discussed multiple schemas for the database

● Finally concluded that storing the matrix elements individually, with
their indices as attributes, was the way to go
○ INSERT INTO large_dataset VALUES(row, col, element);

● Needed to modify postgres’ memory usage limit in the kernel
○ 3GB of swap_buffer space
○ Ran into prob as Postgres service wasn’t starting after this change
○ 5 GB allowed in sysctl.conf shared memory to overcome this

○ 100 GB, 200 GB, 800 GB DIsk

Data Ingestion

First attempt:
drop table if exists data;
create table data(value float);
copy data from '/root/a.csv' DELIMITERS ' ' CSV;

Script for ingesting data in
PostgreSQL

load.py
load_new.py

Script for ingesting data in
PostgreSQL

 with open('/root/datasets/bigdataset.csv') as file:
 r=0
 for line in file:
 cur = conn.cursor()
 c=0
 for chunk in line.split():
 st = "INSERT INTO Large_Dataset VALUES({0},{1},{2})".format(r,c,chunk)
 if r%100==0:
 print st
 cur.execute(st)
 c+=1
 r+=1
 cur.close()
 conn.commit()
 conn.commit()

load.py

 with open('/dev/sdi/bigdataset.csv') as file:
 while c:
 try:
 c=file.read(1)
 except EOFError:
 print "Done."
 exit(1)
 if c==' ':
 if row>21840:
 cur.execute(st.format(row,col,float(num)))
 col+=1
 num=''
 elif c=='\n':
 if row>21840:
 print str(row) + " " + str(col) + " " + str(num)
 cur.execute(st.format(row,col,float(num)))
 conn.commit()
 col=0
 print row
 row+=1
 num=''
 else:
 num+=c
 cur.close()

load_new.py

● c++ abstraction
○ not well documented

● R
○ setup was complicated

● PlPython (most promising)
○ write SQL functions using Python and

Python libraries (like numpy)

Code Interfaces

● The PL/Python procedural language allows PostgreSQL functions to be
written in the Python language.

● <timesTwo.sql_in>
CREATE FUNCTION timesTwo(x double precision) RETURNS double
precision
AS $$

return x * 2;

$$ LANGUAGE plpythonu STRICT VOLATILE;

● psql dbname <timesTwo.sql_in>

What is PL/Python?

● As our data our are stored as <row,col,val> tuples, the sparse matrix
multiplication in the Haar transform was efficient to perform

● For each element of the result matrix, we only select the two relevant
tuples for that particular computation.
○ This may not be efficient enough. The other Postgres group created

subtables as intermediate step in their algorithm so that each select
would not have to scan the whole database.

Haar Wavelet Transform

FOR j in 0..(half_size-1) LOOP
 FOR i in 0..(size-1) LOOP
 EXECUTE format('SELECT value FROM %I WHERE row=2*%s AND col=%s', in_table, j, i) INTO a;
 EXECUTE format('SELECT value FROM %I WHERE row=2*%s+1 AND col=%s', in_table, j, i) INTO b;
 haar_val_1 := compute_transform(a, b, FALSE);
 haar_val_2 := compute_transform(a, b, TRUE);
 EXECUTE format('INSERT INTO %I VALUES (%s, %s, %s)', out_table, j, i, haar_val_1);
 EXECUTE format('INSERT INTO %I VALUES (%s+%s, %s, %s)', out_table, j, half_size, i, haar_val_2);
 END LOOP;
 END LOOP;

Haar Wavelet Transform

● INSERT INTO thresholded_data
SELECT (row, col, threshold(value)) FROM transformed_data;

CREATE OR REPLACE FUNCTION threshold(in_table VARCHAR(30), out_table VARCHAR(30),
threshold float)
RETURNS VOID AS $$
BEGIN
 EXECUTE format('CREATE TABLE %I AS (SELECT * FROM %I WHERE value > %s)', out_table,
in_table, threshold);
END;
$$ LANGUAGE plpgsql;"""

Thresholding

● Compression was implicit to our data
format.
○ When extracting our data from the

database, we simply select where value !
= 0, and

●

Data Compression

● Small Data: Around 2-5 hours
● Medium and Large Data: Ran for more

than 5 days but couldn’t finish.

Benchmarking Haar Transform

● Small data: threshold value = 0.376475
● time : 25 sec

● Could not extract csv using pl/python

Benchmarking threshold

● Originally wanted to use MADlib for
performing our matrix operations.
○ MADlib was expecting matrices in an odd

data format… wait, that was a good
format!

● Single rows/columns don’t fit in
memory

Issues and Problems

Waxing Philosophical
● The greatest software engineering advances

are those that replace specific cleverness
with general cleverness.
○ The point of these DBMS systems is to

provide such a solution.
● The only successful projects ended up

scrapping old designs for clever ones.
○ These seem to be unsuccessful so far.

