
A comparison of various reinforcement
learning algorithms to solve racetrack problem

Vaibhav Mohan

June 20, 2014

Abstract

Reinforcement learning is an area of machine learning that is con-
cerned with how an agent should take actions in an environment so
that it can maximize its cumulative rewards. Unlike most machine
learning techniques, the learner is not told which action it should take
but instead must discover which action maximizes its cumulative re-
ward by trying them. Trial-and-error search and delayed rewards are
the two important distinguishing features of reinforcement learning.

The racetrack problem is a standard control problem and can be
solved using various reinforcement learning techniques. In this paper,
the implementation of value iteration algorithm, Q-learning algorithm,
and a variant of Q-learning algorithm that uses function approxima-
tor is done in order to solve the racetrack problem. The algorithms
are compared based on the score they obtain in solving the problem
on various maps by varying various parameters such as convergence
tolerance, number of iterations etc. The time taken for solving this
problem by each algorithm on various maps corresponding to each set-
ting is also compared in this paper. It is proven from the experiments
that performance of all the algorithms is almost comparable to each
other.

1 Introduction

The reinforcement learning is generally used when we need on-line perfor-
mance which involves finding a balance between exploration of uncharted

1



space and exploitation of current knowledge. The exploration vs. exploita-
tion trade-off in reinforcement learning has been most thoroughly studied
through the multi-armed bandit problem and in finite Markov Decision Pro-
cesses (MDPs)[7, 4, 8]. This problem arises in various fields ranging from op-
eration research to control theory to simulation based optimizations. There
are wide varieties of optimization problems in machine learning domain, all
of which cannot be solved using one technique[11]. Therefore, for proving
that the results which we are getting from one kind of technique is good
enough for us makes it indispensable that we compare the results with other
techniques for the given problem. Whilst doing this, we come across the
various performance aspects of the algorithm i.e. where it would fail and
where it can do remarkably well in solving the problem. Solving these kinds
of problems involves making decision in stochastic environment[7, 6].

MDPs provide a mathematical framework for modeling these kind of prob-
lems. They are useful for studying a wide range of optimization problems
that are solved using dynamic programming and reinforcement learning[2].
More precisely, a Markov Decision Process is a discrete time stochastic con-
trol process. The process is in some state s and the decision maker chooses
any action a that is available in state s at each time step. The process then
moves in a new state s′ and gives reward Ra(s, s

′)[1].
One of the most popular technique for solving this kind of problem in

reinforcement Learning domain is Value Iteration. It uses MDPs to math-
ematically model the problem. The value iteration algorithm is a simple
iterative algorithm that finds an optimal policy for deciding the action that
should be taken from each state. The value iteration algorithm converges to
correct mapping between states in the world and their expected values. The
problem in the algorithm is that it is not obvious when the value iteration al-
gorithm must be terminated. One important result bounds the performance
of the current greedy policy as a function of the Bellman residual of the
current value function[10]. It states that if the maximum difference between
two successive value functions is less than ε, then the value of the greedy
policy differs from the value function of the optimal policy by no more than
2εγ/(1− γ) at any state. This provides an effective stopping criteria for the
algorithm. Puterman discusses another stopping criterion based on the span
semi-norm which may result in earlier termination[5].

The another technique used in solving this problem is using Q-learning
algorithm. This technique learns an action-value function that gives the
expected utility of taking a given action in a given state and following a fixed

2



policy thereafter. The advantage that Q-learning algorithm have over value
iteration algorithm is that it can compare the expected utility of the available
actions without requiring a model of the environment. The disadvantage with
these kind of algorithms is that as the size of state space increases, the time
to convergence and time per iteration increases rapidly. One way to handle
this problem is to use function approximator[7, 4, 3, 8]. The Q-function
is represented in form of a function rather than a lookup table and can
be approximated using standard function approximating algorithms such as
linear regression or neural networks[9]. We have implemented all the three
variants in this paper. A comparison of all the three variants is also done in
this paper.

The remainder of paper is organized as follows. Section 2 defines the
racetrack problem and the various algorithms used in solving that problem.
Section 3 comprises of details of the parameters chosen pertaining to im-
plemented algorithms and experimental methods used with them. Section
4 presents the results obtained after performing the experiment. Section 5
talks about the interpretation of the data which we got from the experiment.
Finally, Section 6 concludes this work.

2 The Racetrack Problem

The racetrack problem is a standard control problem. The goal is to control
the movement of a race car along a pre-defined racetrack so that the racer
can get to finish line from starting line in minimum amount of time. At each
time step, the state of the racer is given by for variables viz. Xt, Yt, Vxt,
and Vyt. Xt and Yt are the x and y component of the displacement vector
at time t. Similarly Vxt, and Vyt are the x and y component of the velocity
vector at time t. The control variables are ax and ay that represent x and
y component of the acceleration vector to be applied at current time step.
We use a discrete, static world so that all the positions are integers. The

3



kinematics equations of this system is given by:

Xt ≡ x position (1)

Yt ≡ y position (2)

Vxt = Xt − Xt−1 ≡ x speed (3)

Vyt = Yt − Yt−1 ≡ y speed (4)

Axt = Vxt − Vxt−1 ≡ x acceleration (5)

Ayt = Vyt − Vyt−1 ≡ y acceleration (6)

The agent can only control ax and ay at any given time step and thus uses
these control variable to influence its state. The values that acceleration
variable can be assigned are −1, 0 and 1. The maximum speed of a racer
at any given time is (Vxt, Vyt) ∈ (±5,±5). If the agent tries to accelerate
beyond these limits, the speed of the agent remains unchanged.

At each time step, velocity is updated first using the acceleration followed
by update of position. This helps us in maintaining integer value for all our
parameters at all times thereby allowing us to have a discrete state space.

Each time we try to accelerate, we have 10% probability that the attempt
will fail thereby making this system non-deterministic. We also have an
additional requirement that the agent must stay on the track all the times
i.e. crashing into the wall is bad. We have two different variants of how bad
a crash is. The first variant places the car to nearest position on the track
to the place where it crashed while the second variant resets the car to start
position making its velocity equal to zero. We have experimented with both
the variants in this paper.

The various algorithms that are implemented in this paper in order to
solve the given problem are discussed in the subsections given below.

2.1 Value Iteration

The value iteration algorithm is used for calculating an optimal policy so that
the agent can choose actions based on that policy. This policy is computed
by calculating the utility of each state and then using the state utilities to
select an optimal action in each state.

4



The Bellman equation

The Bellman equation is used for calculating the utility of being in a state.
The utility of state is the immediate award for that state plus the expected
discounted utility of next state[7, 4] and is given by the equation:

U(s) = R(s) + γ.maxa∈A(s)
∑
a′

P (s′|s, a).U(s′)

where s is the present state, s′ is the next state, a is the action which we
choose from state s, γ is the discount factor, R(s) is the reward function
(which gives the reward an agent gets in each state), and U(s) gives the
utility of being in state s and P (s′|s, a) is the probability of going into state
s′ from state s by choosing action a.

The Value Iteration Algorithm

The value iteration algorithm for calculating utilities of states is given in
figure 1. The bellman equation is used in the value iteration algorithm for
solving MDPs. We have one Bellman equation for each state. So if we have
n states, we have n unknowns and thus we have n simultaneous equations.
These equations are solved to obtain the utilities of the states.

We initialize utility of all state to zero. Then we update the utility value
of each state according to the bellman equation in every iteration. We keep
updating the utility values until we reach an equilibrium i.e. we do not
see change in the utility values for two consecutive iterations. Once the
algorithm converges, we use those utility values to choose an action in each
state thereby making agent to reach finish line from starting line.

2.2 Q-Learning Algorithm

The Q-Learning algorithm comes under the category of active reinforcement
learning and hence decides what action to take in each state. The difference
between this algorithm and value iteration algorithm is that this algorithm
compares the expected utility of the available actions and hence does not
requires a model of the environment.

5



Figure 1: The value iteration algorithm for calculating utilities of states [7].

Exploration

The problem with value iteration agent is that once it learns the policy, it then
sticks to it and thus takes action based on that in the actual environment.
The policy learned by agent is not true optimal policy. This is because
once it finds the route, after experimenting with minor variations, it sticks
to it. It never learns the utilities of other state and thus never finds the
optimal route. This happens because the learned model is not the same as
the true environment i.e. the policy which is optimal in learned model can
be suboptimal in true environment. Since the agent does not knows the true
environment, it cannot compute the optimal action for the true environment.

In order to overcome this problem, an agent must make a trade-off be-
tween exploitation to maximize its reward-as reflected in its current utility
estimates-and exploration to maximize its long-term well-being[7, 4]. Pure
exploitation might make agent to get stuck in rut while pure exploration to
improve the knowledge of agent is of no use as it is never used in deciding
the action.

This type of scheme must be greedy in the limit of infinite exploration
(GLIE). A GLIE scheme must try each action in each state several times

6



so that it does not miss optimal action due to bad series of outcomes. In
this implementation, we give some weight to the the actions that are not
tried by agent while avoiding the action that has low utility value. We use
exploration function in our implementation in order to accomplish this. This
function determines the trade-off between greediness and curiosity of agent.
The function used in this implementation is as follows:

f(u, n) =

{
R+ if n < Ne

u otherwise

where u is the expected reward, n is the record of how frequently each
action has been explored from each state,R+ is an optimistic estimate of the
best possible reward obtainable in any state and Ne is a fixed parameter.
This forces agent to explore each action-state pair at least Ne times.

The Q-Learning Algorithm

The Q-learning algorithm learns an action-utility representation instead of
learning utilities. The value of doing action ′a′ in state ′s′ is given by the
Q-function, Q(s, a). the relation between Q-values and utility values is given
by:

U(s) = maxaQ(s, a)

Q-learning is a model-free method and hence it does not uses transition
function. The update equation for Q-learning is given by:

Q(s, a) = Q(s, a) + α(R(s) + γ(maxa′Q(s′, a′)−Q(s, a)))

where a′ is the action actually taken in state s′. The Q-learning algorithm is
given in figure 2.

The agent percepts the current state s′ and reward r′ and returns an
action based on the Q-table that stores action values indexed by state and
action. The update to the Q-values are done according to the aforementioned
update equation. We keep updating the Q-values until we reach an equilib-
rium i.e. we do not see change in the Q-values for two consecutive iterations.
Once the algorithm converges, we use those Q-values to choose an action in
each state thereby making agent to reach finish line from starting line.

7



Figure 2: The Q-Learning algorithm that learns the value Q(s, a) of each
action in each situation [7].

8



The Q-function Approximation Algorithm

The problem with this approach is that as the size of state space increases,
the time to converge and time per iteration increases rapidly making this
problem computationally intractable. In order to overcome this problem, we
use function approximation algorithm in order to estimate the Q-function.
The representation is approximate because it is not necessary that the true
utility function or Q-function can be represented in the form which we have
chosen.

A reinforcement learning algorithm learns values of various parameters
such that the evaluation function Ûθ approximates the true utility function.
This allows the learning agent to generalize from states it has visited to states
it has not visited. One of the disadvantage of using function approximation
is that the used function might fail to approximate the true utility function
in the chosen hypothesis space.

In this implementation, we have represented Q-function as a weighted
linear function of a set of features x, y, Vx, and Vy where x and y are x and
y component of displacement vector and Vx and Vy are x and y component
of velocity vector. The function used in this implementation is given below:

Ûθ(x, y, Vx, Vy) = θ0 + θ1.x+ θ2.y + θ3.Vx + θ4.Vy

Using collection of trials, we obtain a set of values of Ûθ(x, y, Vx, Vy) and
minimize the least square error in finding the best fit using standard linear
regression. We update the parameters after each trial using Widrow-Hoff
rule for online least-squares. The update rules used for updating parameters
in Q-function is as follows:

θ0 ← θ0 + α[R(s) + γ(maxa′Q̂θ(s
′, a′)− Q̂θ(s, a)], (7)

θ1 ← θ1 + α[R(s) + γ(maxa′Q̂θ(s
′, a′)− Q̂θ(s, a)].x, (8)

θ2 ← θ2 + α[R(s) + γ(maxa′Q̂θ(s
′, a′)− Q̂θ(s, a)].y, (9)

θ3 ← θ3 + α[R(s) + γ(maxa′Q̂θ(s
′, a′)− Q̂θ(s, a)].Vx, (10)

θ4 ← θ4 + α[R(s) + γ(maxa′Q̂θ(s
′, a′)− Q̂θ(s, a)].Vy (11)

9



3 Algorithms and Experimental Methods

Value Iteration Algorithm

There were various parameters to choose in case of value iteration algorithm
like what should be the values of ε, discount factor etc. We chose the value
of epsilon as 0.000000001 as more smaller the value of ε is, the more we are
close to convergence. Also the value of discount factor was chosen to be 0.5.
This is because it gives a good balance between rewards in the distant future
and additive rewards. The starting position of an agent is chosen at random
from one of the existing starting squares on map.

The results of comparison of algorithm is given in the next section. We
compared the number of iterations and time taken to reach the convergence
on various datasets. We also had a parameter for defining how bad a crash
is i.e. hard crash resets the position of agent to starting line and makes its
velocity zero while soft crash resets the agent to nearest cell where it collides
with wall. We experiment with both the settings and their result is also
compared. A comparison of time taken in training the algorithms on various
datasets is also done.

Q-Learning Algorithm

There were various parameters tunable parameters such as ε, discount factor,
minimum number of of times the agent will explore a given state-action pair
before giving up on it, learning factor, whether to use function approximator
or not etc. We chose the value of epsilon as 0.0001 as more smaller the value
of ε is, the more we are close to convergence. Also the value of discount factor
was chosen to be 0.99 as it favors the actions of agent to have more additive
rewards. The maximum exploration count was set to 1 so that the agent tries
each action at least once before giving up on it. This way we will not miss
the optimal solution. The learning factor (α) was chosen to be 0.5. This is
because if the learning factor is close to zero, it might get good results but
it will take too long to converge. On the other hand if the learning factor is
close to one, the agent might converge faster and thus might miss the optimal
results. The starting position of an agent is chosen at random from one of
the existing starting squares on map.

We compared the number of iterations and time taken to reach the con-
vergence on various datasets. We also had a parameter for defining how bad

10



a crash is i.e. hard crash resets the position of agent to starting line and
makes its velocity zero while soft crash resets the agent to nearest cell where
it collides with wall. We experiment with both the settings and their result
is also compared. We had an option whether to use function approximator
for approximating Q-function or not. The experiment was done with each
variant and their result was compared. We also compared how well an agent
does as we increase the number of iterations to train the agent. A comparison
of time taken in training the algorithms on various datasets is also done.

Data Sets

The datasets used in this problem are ASCII representations of racetracks.
The first line in the data files contains number of rows and columns in a
racetrack as a comma delimited pair. the rest of the file is a map with
specified dimension with one character at each point. the characters present
in the map are ′S ′, which represents that it is one of the start positions, ′F ′,
which represents that it is one of the finish positions, ′.′, which represents that
it is open racetrack where if we apply an action, then there is 10% probability
that the action will fail and there will be no change in the velocity of agent,
′,′, which represents that it is open racetrack with slippery terrain where if
we apply an action, then there is 60% probability that the action will fail
and there will be no change in the velocity of agent, and finally ′#′, which
represents that it is an obstacle.

We used four datasets of this kind to test our implementation. The
racetracks taken were of O,L and R shape. All the tracks had only simple
terrain except O-track. We had two variants of O-track. One had normal
terrain while the other map contained slippery terrain in addition to normal
terrain. The comparison of performance of all the algorithms were done on
both type of datasets.

4 Results

The graph in figure 3 shows scores obtained on the various racetracks as
we vary the discount factor (γ) in case of value iteration algorithm. The
convergence tolerance was set to 0.0000000001. This value was chosen as
having small value for convergence tolerance makes agent do well on given
racetrack.

11



Figure 3: The Value Iteration Algorithm - Graph showing how score obtained
on various tracks varies as we vary the discount factor (γ).

Figure 4: The Value Iteration Algorithm - Graph showing how number of
iterations taken to converge on various tracks varies as we vary the discount
factor (γ).

12



Data file hard crashing? No. of iter. taken to converge Time Score

L-track no 35 33 sec. -10
L-track yes 80 175 sec -13
R-track no 54 45 sec -21
R-track yes 82 701 sec -30
O-track no 49 42 sec -24
O-track yes 87 593 sec -32
O-track2 no 95 65 sec -27
O-track2 yes 76 521 sec -38

Table 1: The performance of Value Iteration Algorithm on various racetracks.

Figure 4 shows graph of number of iterations taken by algorithm to con-
verge on a particular racetrack versus discount factor (γ) in case of value iter-
ation algorithm. Here also the convergence tolerance was set to 0.0000000001.

Table 1 shows the performance of value iteration algorithm on various
racetracks. We experimented with soft crash as well as hard crash and
recorded number of iterations taken to converge, time taken in training the
agent and score obtained by the agent on each racetrack.

The graph in figure 5 and figure 6 shows scores obtained on the various
racetracks as we vary the number of iterations used to train the agent in case
of Q-learning algorithm that uses lookup table and Q-learning agent that
uses function approximator respectively. The convergence tolerance was set
to 0.0000000001. This value was chosen as having small value for convergence
tolerance makes agent do well on given racetracks. Also the value of discount
factor was chosen to be 0.99 as it favors the actions of agent to have more
additive rewards. The maximum exploration count was set to 1 so that the
agent tries each action at least once before giving up on it. The learning
factor (α) was chosen to be 0.5. This is because if the learning factor is close
to zero, it might get good results but it will take too long to converge. On
the other hand if the learning factor is close to one, the agent might converge
faster and thus might miss the optimal results. The starting position of an
agent is chosen at random from one of the existing starting squares on map.

Table 2 and table 3 shows results related to Q-learning algorithm. We had
two variants of Q-learning algorithm. The first variant uses a lookup table for
Q-values and its performance on various racetracks is shown in table 2 while

13



Figure 5: The Q-Learning algorithm without using function approximator -
Graph showing scores obtained on various racetracks vs number of iterations

Figure 6: The Q-Learning algorithm using function approximator - Graph
showing scores obtained on various racetracks vs number of iterations

14



Data file hard crashing? No. of iter. taken to converge Time Score

L-track no 76911 2128 sec. -11
L-track yes 17625 2271 sec -15
R-track no 185784 4159 sec -28
R-track yes 159531 3603 sec -38
O-track no 218019 6769 sec -25
O-track yes 237413 7593 sec -33
O-track2 no 167479 6512 sec -35
O-track2 yes 209701 7521 sec -33

Table 2: The performance of Q-Learning Algorithm using lookup table for
Q-values on various racetracks.

Data file hard crashing? No. of iter. taken to converge Time Score

L-track no 52541 1591 sec. -13
L-track yes 23769 2132 sec -18
R-track no 192783 3395 sec -23
R-track yes 115231 2819 sec -35
O-track no 233891 4563 sec -32
O-track yes 216567 6564 sec -41
O-track2 no 143125 5593 sec -33
O-track2 yes 255191 6147 sec -42

Table 3: The performance of Q-Learning Algorithm using function approxi-
mator on various racetracks.

15



the second variant uses function approximator to approximate the values of
Q-function weight and uses them to compute Q-value. The performance of
second variant is shown in table 3. We experimented with soft crash as well
as hard crash using both variants and recorded number of iterations taken to
converge, time taken in training the agent and score obtained by the agent
on each racetrack.

5 Discussion

L-track data file

Figure 3 shows the results of experimentation with value iteration algorithm
by varying the discount factor(γ) on L-track. It can be seen from the figure
that varying γ does not have any effect on the score obtained by agent on
L-track. Even if we set use the hard crashing variant, we do not see any
significant change in the score obtained. This might be happening because
the map is easy to learn by the agent and agent converges to optimal path
in both the cases.

In figure 4, we can see that as we increase gamma, the number of iter-
ations taken to converge also increases in case of value iteration algorithm.
Increase is not significant in case of soft crashing variant but hard crashing
variant takes larger number of iterations to converge to optimal Q-values. It
can also be seen from data given in table 1. Also the score is better in case of
soft crashing variant. This happens because soft crash resets the car position
to nearest cell where agent crashes while hard crash resets the car to start
position.

Figure 5 and 6 shows the results of experimentation with Q-learning al-
gorithm using lookup table for Q-values and Q-learning algorithm that uses
function approximator to calculate Q-values on L-track. The graph shows
scores obtained by both the algorithms using hard crashing as well as soft
crashing as we increase the number of iterations. It can be seen from the ob-
tained results that as we increase the number of iterations, the performance
of agent increases and after approximately 50000 iterations, the score ob-
tained on L-track becomes constant in case of both the algorithms. Here the
soft crashing variant does better as compared to hard crashing variant in case
of both the algorithms because soft crash resets the car position to nearest
cell where agent crashes while hard crash resets the car to start position.

16



Table 2 and table 3 shows scores obtained by Q-learning algorithm us-
ing lookup table for Q-values and Q-learning algorithm that uses function
approximator to calculate Q-values after it fully converges. It can be seen
that the algorithm using lookup table performs better as compared to the
algorithm using function approximator. This happens because the lookup
table contains exact values for each state while the algorithm using func-
tion approximator approximates Q-values and hence would not be getting
the optimal Q-values. It can also be seen that performance of hard crashing
variant is bad as compared to the performance of soft crashing variant in
case of both algorithms. It can also be seen that hard crashing version takes
lesser number of iterations to converge as compared to soft crashing version.

R-track data file

Figure 3 shows the results of experimentation with value iteration algorithm
by varying the discount factor(γ) on R-track. It can be seen from the figure
that varying γ does not have any effect on the score obtained by agent using
soft crashing variant on R-track. However if we use the hard crashing vari-
ant, we can see that the obtained score increases sometimes and then again
decreases. The change is minimal if γ is set to 0.5.

In figure 4, we can see that as we increase gamma, the number of iter-
ations taken to converge also increases in case of value iteration algorithm.
Increase is not significant in case of soft crashing variant but hard crashing
variant takes larger number of iterations to converge to optimal Q-values. It
can also be seen from data given in table 1. Also the score is better in case of
soft crashing variant. This happens because soft crash resets the car position
to nearest cell where agent crashes while hard crash resets the car to start
position.

Figure 5 and 6 shows the results of experimentation with Q-learning al-
gorithm using lookup table for Q-values and Q-learning algorithm that uses
function approximator to calculate Q-values on R-track. The graph shows
scores obtained by both the algorithms using hard crashing as well as soft
crashing as we increase the number of iterations. It can be seen from the
obtained results that initially we get random values of scores but as we in-
crease the number of iterations, we see an improvement in the score obtained
in case of both the algorithms that corroborates the fact that we need to in-
crease the number of iterations in order to obtain better score. Here the soft
crashing variant does better as compared to hard crashing variant in case of

17



both the algorithms because soft crash resets the car position to nearest cell
where agent crashes while hard crash resets the car to start position.

Table 2 and table 3 shows scores obtained by Q-learning algorithm us-
ing lookup table for Q-values and Q-learning algorithm that uses function
approximator to calculate Q-values after it fully converges. The results ob-
tained on this track is similar to the results obtained on L-track as it can be
seen from both the tables.

O-track and O-track2 data file

Figure 3 shows the results of experimentation with value iteration algorithm
by varying the discount factor(γ) on O-track and O-track2. It can be seen
from the figure that as the value of γ increases, the score obtained becomes
better. This happens on both tracks. It can also be seen that soft crashing
variant does not show any significant change in scores obtained as we vary γ,
but we can see a large variation in the scores obtained in case of hard crashing
variants on both the tracks. However it can be seen that the changes are not
too significant if γ = 0.5. Therefore we used this value of γ in our experiment.

In figure 4, we can see that as we increase gamma, the number of iter-
ations taken to converge also increases in case of value iteration algorithm.
Increase is not significant in case of soft crashing variant but hard crashing
variant takes larger number of iterations to converge to optimal Q-values on
both the tracks. It can also be seen from data given in table 1. Also the
score is better in case of soft crashing variant. This happens because soft
crash resets the car position to nearest cell where agent crashes while hard
crash resets the car to start position.

Figure 5 and 6 shows the results of experimentation with Q-learning al-
gorithm using lookup table for Q-values and Q-learning algorithm that uses
function approximator to calculate Q-values on O-track as well as O-track2.
The graph shows scores obtained by both the algorithms using hard crashing
as well as soft crashing as we increase the number of iterations.It can be seen
from the obtained results that as we increase the number of iterations, the
performance of agent increases and after approximately 50000 iterations, the
score obtained on L-track becomes constant in case of both the algorithms.
Here the soft crashing variant does better as compared to hard crashing vari-
ant in case of both the algorithms because soft crash resets the car position
to nearest cell where agent crashes while hard crash resets the car to start
position.

18



Table 2 and table 3 shows scores obtained by Q-learning algorithm using
lookup table for Q-values and Q-learning algorithm that uses function ap-
proximator to calculate Q-values after it fully converges on both the tracks.
The results obtained on these two tracks are similar to the results obtained
on L-track as it can be seen from both the tables.

Comparison of the algorithms

From table 1,2, and 3; it can be seen that value iteration algorithm takes
really less time as compared to other two variants of Q-learning. It can also
be seen that the version of Q-learning algorithm that uses lookup table takes
less time to train as compared to the Q-learning algorithm that uses function
approximator. This is because approximating the Q-function takes lots of
time. However using Q-learning algorithm that uses function approximator
makes more sense because if the size of state space will be increased, the
version that uses lookup table might fail as we might run out of memory and
hence would be unable to find the solution.

Table 1,2, and 3 also shows that value iteration algorithm takes very
less number of iterations to find solution as compared to both the imple-
mentations of Q-learning algorithm. It can also be seen that the version of
Q-learning algorithm that uses lookup table takes less number of iterations
to converge as compared to the Q-learning algorithm that uses function ap-
proximator.

6 Conclusions

It have been shown that value iteration algorithm performs faster and better
as compared to both the variants of Q-learning algorithm. However in more
realistic settings, the value iteration might not be able to find the optimal
solution while the Q-learning algorithm would perform better. It is also
shown that the implementation of Q-learning algorithm that uses function
approximator, though slow, would be better in long run as compared to the
version that uses lookup table. This would happen because as the state space
grows, the memory requirement for storing various states would also grow
exponentially rendering the lookup table version useless.

The limitation of our approach was that we used linear classifier in order
to approximate the Q-function. There might be a chance that the Q-function

19



actually would be a non-linear function in which case the performance of
our algorithm would be terrible. In order to overcome this problem, neural
networks can be used to approximate the Q-function which would yield good
results.

References

[1] R. Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, 1957.

[2] R.E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] Lucian Busoniu and Robert Babuska. Reinforcement Learning and Dy-
namic Programming using Function Approximators. Taylor and Francis
CRC Press, 2010.

[4] T. M. Mitchell. Machine Learning. McGraw hill, 1997.

[5] Martin L. Puterman. Markov Decision Processes–Discrete Stochastic
Dynamic Programming. John Wiley and Sons, 1994.

[6] P. E. Hart R. O. Duda and D. G. Stork. Pattern Classification, 2nd Ed.
Wiley interscience, 2001.

[7] S. Russell and P. Norvig. Artificial Intelligence : A Modern Approach,
3rd Ed. Prentice Hall, 2009.

[8] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-
learning. Springer : Machine Learning, 8(4):279–292, 1992.

[9] Ronald J. Williams. A class of gradient-estimating algorithms for rein-
forcement learning in neural networks. Proceedings of the IEEE First
International Conference on Neural Networks, 1987.

[10] Ronald J. Williams and Leemon C. Baird. Tight performance bounds
on greedy policies based on imperfect value functions. Technical Report
NU-CCS-93-14, Northeastern University, College of Computer Science,
Boston, MA, 1993.

20



[11] D. H. Wolpert and W. G. Macready. No free lunch theorems for opti-
mization. Evolutionary Computation, IEEE Transactions on, 1(1):67–
82, 1997.

21


