
 PROGRAMMING MODEL FOR GPGPU FOR

VARIOUS ALGORITHMIC PROBLEMS

A PROJECT REPORT

 Submitted in partial fulfillment for the award of the degree of

B.TECH

in

Information Technology

by

 Vaibhav Mohan 08BIT230

Under the Guidance of

 Prof. Balaraman S.

 VIT

U N I V E R S I T Y

 (Estd. u/s 3 of UGC Act 1956)

 School of Information Technology & Engineering

 MAY 2012

DECLARATION BY THE CANDIDATE

I hereby declare that the project report entitled “PROGRAMMING MODEL FOR

GPGPU FOR VARIOUS ALGORITHMIC PROBLEMS” submitted by me to Vellore

Institute of Technology University, Vellore, in partial fulfillment of the requirement

for the award of the degree of B.Tech (Information Technology) is a record of

bonafide project work carried out by me under the guidance of Prof. Balaraman S.

I further declare that the work reported in this project has not been submitted and

will not be submitted, either in part or in full, for the award of any other degree or

diploma in this institute or any other institute or university.

Place: Vellore Signature of the Candidate

Date : 1st May, 2012 Vaibhav Mohan

VIT

U N I V E R S I T Y

(Estd. u/s 3 of UGC Act 1956)

School of Information Technology & Engineering [SITE]

CERTIFICATE

This is to certify that the project report entitled “PROGRAMMING MODEL FOR

GPGPU FOR VARIOUS ALGORITHMIC PROBLEMS” submitted by

Vaibhav Mohan (08BIT230) to Vellore Institute of Technology University, Vellore

in partial fulfillment of the requirement for the award of the degree of

B.Tech(Information Technology) is a record of bonafide work carried out by him

under my supervision. The project fulfills the requirements as per the regulations of

this Institute and in my opinion meets the necessary standards for submission. The

contents of this report have not been submitted and will not be submitted either in

part or in full, for the award of any other degree or diploma in this institute or any

other institute or university.

Prof Balaraman, S. Prof. C. Ranichandra

Supervisor

Program Manager,

B.Tech (IT)

Associate Professor, SITE

Internal Examiner (s) External Examiner (s)

ACKNOWLEDGEMENT

I owe great many thanks to a great many people who helped and supported in

completing this project.

I would like to deeply thank Prof. Balaraman, S. the Guide of my project, for

guiding in my work, and correcting various documents of mine with attention and

care. He has taken initiative to suggest ideas throughout my project work.

I express my thanks to the Chancellor Dr. G. Viswanathan for extending his

support and providing us the infrastructure to carry this out.

My deep sense of gratitude to Vice Chancellor Dr. V. Raju and Pro-Vice Chancellor

Dr. S. Narayanan for their support. My thanks are due to

Dr. R. Saravanan (Director of SITE), Prof. C. Ranichandra (Program Manager),

and Prof. M. Asha Jerlin (Year Coordinator) for their support.

I would also thank my Institution, VIT, and my faculty members without whom this

project would have been a distant reality. I also extend my heartfelt thanks to my

family and well wishers.

Place: Vellore Vaibhav Mohan

 (08BIT230)
Date: 1st May, 2012

 I

 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 SYNOPSIS IV

 LIST OF TABLES V

 LIST OF FIGURES VI

 LIST OF ACRONYMS VIII

1. INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Importance 3

2. OVERVIEW AND PLANNING 4

2.1 Proposed System Overview 4

2.2 Challenges 4

2.3 Architecture Design 5

2.4 Modules design and description 7

2.5 Architecture Specification 8

2.6 Hardware Requirements 9

2.7 Software Requirements 9

3. LITERATURE SURVEY AND REVIEW 10

3.1 Literature Survey 10

3.1 Literature Summary 16

 II

4. SYSTEM DESIGN 17

4.1 High-Level Design 17

4.1.1 For RSA Algorithm 17

4.1.2 For Dense Matrix-Matrix Multiplication 19

4.2 Low-Level Design 21

4.2.1 For RSA Algorithm 21

4.2.2 For Dense Matrix-Matrix Multiplication 21

4.3 Test Cases Generation 21

4.3.1 For RSA Algorithm 21

4.3.2 For Dense Matrix-Matrix Multiplication 23

5. System Implementation 25

5.1 Description on the software used 25

5.2 Description on Methods/functions used 26

5.3 Module wise implementation description 28

5.4 Code 29

5.4.1 Code for CPU implementation of RSA Algorithm 29

5.4.2 Code for GPU implementation of RSA Algorithm 31

5.4.3
 Code for CPU implementation of Dense Matrix-Matrix

Multiplication
34

5.4.4
 Code for GPU implementation of Dense Matrix-Matrix

Multiplication
35

6. Results and Discussion 37

6.1 Output / Results 37

6.2 Results Analysis 40

6.3 Discussion 44

 III

7. Conclusion and Future Work 45

7.1 Conclusion 45

7.2 Scope of Future Work 45

8. REFERENCES 46

 IV

 SYNOPSIS

Demand in the consumer market for graphics hardware that accelerates rendering of

3D images has resulted in Graphic Cards that are capable of delivering astonishing

levels of performance. These results were achieved by specifically tailoring the

hardware for the target domain. As graphics accelerators become increasingly

programmable however, this performance has made them an attractive target for

other domains. Graphic processing units provide a low-cost parallel computing

architecture. It is possible to achieve massive parallelism by SIMD (Single Instruction

Multiple Data) on General Purpose Graphics Processing Unit (GPGPU) integrated with

Central Processing Unit (CPU).

In this project, two application of different algorithmic requirements - RSA Algorithm

and Dense Matrix-Matrix Multiplication - are taken up for implementing on a parallel

infrastructure with acceleration programming model, Compute Unified Device

Architecture (CUDA), which uses multithreading technique. RSA Algorithm is one of

the algorithms for public-key cryptography that is based on the presumed difficulty

of factoring large. RSA Algorithm using CUDA can achieve high performance. The

Dense Matrix-Matrix Multiplication algorithm uses block algorithm for processing the

elements using Accelerator Unit (GPU) and the CPU. The performance enhancement

with the GPU programming is recorded. This comparison is presented for both the

applications.

 V

LIST OF TABLES

Table No. Title Page No.

4.3.1.1 Test Cases for RSA Encryption and Decryption 21

4.3.2.1
Test Cases for Dense Matrix-Matrix

Multiplication
23

4.3.2.2
 Test Cases for Dense Matrix-Matrix

Multiplication (GPU only)
24

 VI

 LIST OF FIGURES

Figure No. Title Page No.

Fig. 1.1.1
 Ping-Pong operation in the GPU to produce

intermediate results
2

Fig. 2.3.1 Evolution of GPU and CPU w.r.t. time 5

Fig. 2.3.2
 Floating-Point operations per second and

memory bandwidth for CPU and GPU
6

Fig. 2.3.3 Architecture of CPU and GPU 6

Fig. 2.3.4 Figure Showing architecture of CUDA 7

Fig. 2.5.1
 Architecture of system deploying RSA

Algorithm
8

Fig. 2.5.2
 Architecture of system deploying GPGPU for

Dense Matrix-Matrix Multiplication
9

Fig. 4.1.1.1 Use case for RSA Algorithm 17

Fig. 4.1.1.2 Flow chart for RSA Algorithm 18

Fig. 4.1.2.1
 Use case for Dense Matrix-Matrix

Multiplication
19

Fig. 4.1.2.2
 Flow chart for Dense Matrix-Matrix

Multiplication
20

Fig. 6.1.1
 Output of RSA Algorithm implemented on CPU

using message size 4500
37

Fig. 6.1.2
 Output of RSA Algorithm implemented on GPU

using message size 4500
38

Fig. 6.1.3

 Output of Dense Matrix-Matrix Multiplication

implemented over CPU with Dimension

1000x1000

39

Fig. 6.1.4

 Output of Dense Matrix-Matrix Multiplication

implemented over GPU with Dimension

3000x3000

40

Fig. 6.2.1
 Graph of Time taken by CPU and GPU in

performing RSA encryption
41

 VII

Fig. 6.2.2
 Graph of Time taken by CPU and GPU in

performing RSA decryption
42

Fig. 6.2.3
 Graph of Time taken by CPU and GPU in

performing Dense Matrix-Matrix Multiplication
43

Fig.6.2.4
 Graph of Time taken by GPU in performing

Dense Matrix-Matrix Multiplication
44

 VIII

LIST OF ACRONYMS

GPU - Graphics Processing Unit

CPU - Central Processing Unit

RSA - Rivest Shamir Adleman

CUDA - Compute Unified Device Architecture

w.r.t. - With Respect To

SIMD - Single Instruction Multiple Data

TFLOPs - Tera Flops

GFLOPs - Giga Flops

BSP - Bulk Synchronous Parallel

GPGPU - General Purpose GPU

ALU - Arithmetic and Logical Unit

API - Application Programming Interface

CUFFT - CUDA Fast Fourier Transforms Library

CUBLAS - CUDA Basic Linear Algebra Subroutines Library

CUSPARSE - CUDA Sparse Matrix library

NVCC - Nvidia CUDA C/C++ Compiler

1 | P a g e

1. INTRODUCTION

1.1 Background:

 In today‘s era, there is a great importance to parallel programming to gain
high performance in terms of time required for data computation. There are some

constraints to achieve parallelism on CPU (Central Processing Unit). It is possible to
achieve data parallelism by SIMD (Single Instruction Multiple Data) on General
Purpose Graphics Processing Unit (GPGPU) integrated with Central Processing Unit

(CPU). In implementing security algorithms on GPGPU, most of research is going on.
In this project, RSA algorithm and Dense Matrix-Matrix Multiplication is implemented
to utilize the parallel architecture of Graphic Card (GPU) using a programming model

Compute Unified Device Architecture (CUDA) which uses multithreading technique.
RSA algorithm is one of the security algorithms. RSA is an algorithm for public-key
cryptography that is based on the presumed difficulty of factoring large integers, the

factoring problem. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman,
who first publicly described it in 1978. A user of RSA creates and then publishes the
product of two large prime numbers, along with an auxiliary value, as their public

key. The prime factors must be kept secret. Anyone can use the public key to
encrypt a message, but with currently published methods, if the public key is large
enough, only someone with knowledge of the prime factors can feasibly decode the

message. GPUs provide high computation power at low costs and have been
described as desktop supercomputers. The GPUs have been used for many general
purpose computations due to their low cost, high computing power, and high

availability. The latest GPUs, for instance, can deliver close to 1 Tera Flops (TFLOPs)
of compute power at a higher cost. The stages of were exploited for parallelism with

the flow of execution handled serially using the pipeline in the earlier, GPGPU model.
The GPUs expose a general, data-parallel programming model today in the form of
CUDA. The recently adopted OpenCL standard will provide a common computing

model to not only all GPUs, but also to other platforms like multi-core, many-core,
and Cell/B.E. CUDA from NVIDIA presents a heterogeneous programming model
where the parallel hardware can be used in conjunction with the CPU. In conjunction

with a CPU, it can be used as Bulk Synchronous Parallel (BSP) hardware with the
CPU deciding the barrier for synchronization. GPU programming models are
constrained in such a way that the compiler and runtime can reason about the

application and extract the parallelism automatically. Examples of this include
DirectX, CUDA, and Cg. Intel architecture is more general purpose than GPU and
other coprocessor architecture. Unlike GPUs, Intel architectures have:

 1) Inter core communication through substantial, coherent cache hierarchies.

2) Efficient, low latency thread synchronizations across the entire processor
array.

 3) Narrower effective SIMD width.
At a high level, the goal is to define a constrained programming model that

efficiently and portably targets highly parallel general purpose cores, such as Intel
multi-core and Tera-scale systems. There are different ways to classify parallel

2 | P a g e

computers. One of the more widely used classifications, in use since 1966, is called
Flynn's Taxonomy. Flynn's taxonomy distinguishes multi-processor computer

architectures according to how they can be classified along the two independent
dimensions of Instruction and Data. Each of these dimensions can have only one of
two possible states: Single or Multiple. GPU based processors can efficiently perform

floating point operations and use parallelism at massive levels due to which they can
be a suitable choice for processing large amounts of data.

1.2 Problem Statement:

 When we implement RSA algorithm on CPU, it takes a lot of time as CPU
processes the text for encryption one by one. On the other hand GPU processes the
text in parallel manner as it has more number of core as compared to CPU and

hence can show massive parallel computation thus giving us an increase in
performance boost of RSA algorithm. Implementing a public key cryptosystem is
always a tradeoff between security and efficiency. The problem with the number

theoretic cryptosystems (i.e. RSA) is that they require a lot of computational power
for providing a high level of security and most likely a low level of efficiency. Public
key algorithms are known to be slower than symmetric key alternatives because of

their basis in modular arithmetic. Therefore, how to make a more efficient and faster
implementation of public key algorithms is concerned. Running the public key

algorithms by use of the parallel properties of the GPU in modular multiplication and

3 | P a g e

modular exponentiation may be a solution to this problem. Multiplication of big
integers is one of the building blocks in doing modular arithmetic. The field of

General-purpose GPU which is about solving problems other than graphics rendering
using the GPU was until recently without a good solution. CUDA is a framework
which makes these kinds of implementations more available to the general public of

programmers. Using the unique properties of the GPU through CUDA has greatly
increased the efficiency of many computational problems. The target in this project
is to study and analyse the majority of algorithms related to the modular

multiplication and modular exponentiation, and then to design and make an
implementation of a public key algorithm in CUDA. Finally, this project will compare

the performance between the GPU implementation and the CPU implementation in
order to look into the possibility of improving the performance of public key
algorithms.

1.3 Importance:

 The necessity for information security has become more and more

widespread during these days. Fast modular exponentiation algorithms are often
considered of practical significance in public-key cryptosystems. Parallelization of
public key algorithms could be very useful for a high level of security system and

save a lot of computation time. With the combination of them, the public key
cryptosystem will be more efficient and effective for those kinds of system.

 Furthermore, in this research the performance of public key algorithm will be
compared between the GPU implementation and the CPU implementation. It could
be used to determine the direction of parallelization of public key algorithms in the

future. The Dense Matrix-Matrix Multiplication is common in various scientific
domains. With the development of the GPGPU field, modern graphics processing
units (GPUs) have been at the leading edge of increasing chip-level parallelism.

Current NVIDIA GPUs are many core processor chips with parallelism architecture.
This degree of hardware parallelism reflects the fact that GPU architectures evolved

not only to fit the needs of real-time computer graphics but also parallel computing.
On the other hand, the GPU is easy use and cheaper compared to a computer
cluster for the purpose of parallel computations. So the research in this field will

have a different angle for parallel computation.

4 | P a g e

2. OVERVIEW AND PLANNING

2.1 Proposed system overview:

 This project focuses on how to make a more efficient and faster
implementation of public key algorithms and Dense Matrix-Matrix Multiplication. Two

experiments implementing a public key algorithm are performed on different
hardware platforms. One is to implement the selected algorithms normally on a CPU
with different data sizes, and then record the execution time and other related data.

Another is to execute designed parallel algorithms on a CUDA-enabled GPU, and
record related data as well. Finally the performance comparison is performed
between those experiments. The parallelization of public key algorithms is mainly

performed in the part of modular multiplication and modular exponentiation.
Therefore, this project implements a representative public-key algorithm RSA
respectively on the CPU and the CUDA-enabled GPU, and compares their

performances to find out whether the public-key algorithm could be implemented
faster and more efficient on a GPU. The project also compares the CPU as well as
GPU implementation of dense Matrix-Matrix Multiplication and compares the results.

Theoretically, the performance that RSA as well as Dense Matrix-Matrix Multiplication
implemented on a GPU should be better than that on the CPU since parallelization is
performed on the CUDA-enabled GPU with massive parallel processors. In addition,

there are still other related issue concerned in this project, such as time
consumption in data transfer between host and device. The CUDA driver API and C

runtime for CUDA are two of the programming interfaces to CUDA . The C runtime
for CUDA handles kernel loading and kernels‘ setting before they are launched. The
implicit code initialization, CUDA context management, CUDA module management

(cubin and function mapping), kernel configuration, and parameter passing are all
performed by the C runtime for CUDA. In addition, CUDA supports C++ code and
can be compiled with any C++ compiler. However, the current version of CUDA does

not support all features of C++. Therefore, all functions in this project are mostly
performed in C.

2.2 Challenges:

 The challenges faced in this project are how to parallelize the working of RSA

algorithm on GPU so that we can gain a performance boost in the RSA encryption of
texts. Since CUDA doesn‘t support recursive calls to the functions, hence we cannot
use that while programming for GPU. There is also a challenge to generate good

prime numbers so that the encryption done must be secure and hard to crack. Also
the challenge faced in implementing Dense Matrix-Matrix Multiplication is memory

constraint.

5 | P a g e

2.3 Architecture Design:

 Driven by the insatiable market demand for real time, high-definition 3D
graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly
parallel, multithreaded, many core processor with tremendous computational

horsepower and very high memory bandwidth.

6 | P a g e

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed

such that more transistors are devoted to data processing rather than data caching
and flow control.

l

In November 2006, NVIDIA introduced CUDA, a general purpose parallel computing
architecture – with a new parallel programming model and instruction set
architecture – that leverages the parallel compute engine in NVIDIA GPUs to solve

7 | P a g e

many complex computational problems in a more efficient way than on a CPU.
CUDA comes with a software environment that allows developers to use C as a high-

level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

 Fig 2.3.4 A figure showing architecture of CUDA

2.4 Modules design and description:

I. Module 1 – CPU Implementation of RSA Algorithm: In this module, the
RSA algorithm is implemented using C++ and utilizes CPU in

encryption or decryption. The time taken by CPU in computing prime
numbers, encrypting text, and decrypting text is calculated and stored
for comparing with GPU implementation.

II. Module 2 – GPU Implementation of RSA Algorithm: In this module, the

RSA algorithm is implemented using C on GPU. The algorithm is
parallelized in order to perform operations efficiently as compared to
CPU implementation. Here also the time taken by GPU in computing

prime numbers, encrypting text and decrypting text is calculated and
then the comparison of time taken on CPU and GPU is done.

III. Module 3 – CPU Implementation of Dense Matrix-Matrix Multiplication:
In this module, the Dense Matrix-Matrix Multiplication is implemented

8 | P a g e

using C++ and utilizes CPU in performing Multiplication. The time
taken by CPU is calculated and stored for comparing with GPU

implementation.

IV. Module 4 – GPU Implementation of Dense Matrix-Matrix Multiplication:

In this module, the Dense Matrix-Matrix Multiplication is implemented
using C on GPU. The algorithm is parallelized in order to perform
operations efficiently as compared to CPU implementation. Here also

the time taken by is calculated and then the comparison of time taken
on CPU and GPU is done.

2.5 Architecture Specification:

 The User enters plain text as input to the system. This text is then encrypted using
RSA algorithm and is then converted into cipher text. It is then decrypted on the

other user‘s end with the help of his/her private key and message is then read by
the intended user.

9 | P a g e

The User just runs the program and the program computes the time taken in performing
NxN Matrix-Matrix Multiplication where ‗N‘ is the dimension of the Matrix which is supplied
by the user of the program.

2.6 Hardware Requirements:

I) Intel Core 2 Duo processor E7400 @ 2.8 GHz
II) NVIDIA Graphics Card with CUDA

2.7 Software Requirements:

I) NVIDIA latest graphics drivers. (Here we used NVIDIA Geforce

GTS 250 with driver version 296.10)
II) CUDA toolkit v4.0.17

III) CUDA Tools
IV) GPU Computing SDK v4.0.19
V) NVIDIA Parallel NSight

VI) Microsoft Visual Studio 2008/2010
VII) .NET Framework 3.5 or later

10 | P a g e

3. LITERATURE SURVEY AND REVIEW

3.1 Literature Survey:

Title:

Toward Acceleration of RSA Using 3D Graphics Hardware.

Author:

A. Moss, D. Page and N.P. Smart

Description:

Efficient arithmetic operations modulo a large prime (or composite) number are core
to the performance of public key cryptosystems. RSA is based on arithmetic in the
ring ZN, where N = pq for large prime p and q, while Elliptic Curve Cryptography

(ECC) can be parameterised over the finite field Fp for large prime p. With a general
modulus m taking the value N or p respectively, on processors with a w-bit word
size, one commonly represents 0 <=x < m using a vector of n = dm/2we radix-2w

digits. Unless specialist coprocessor hardware is used, modular operations on such
numbers are performed in software using well known techniques that operate using
native integer machine operations. Given the significant computational load, it is

desirable to accelerate said operations using instruction sets that harness Single
Instruction Multiple Data (SIMD) parallelism; in the context of ECC, a good overview
is given by Hankerson et al. Although dedicated vector processors have been

proposed for cryptography these are not commodity items. In an alternative
approach, researchers have investigated cryptosystems based on arithmetic in fields

modulo a small prime m or extension thereof. Since ideally we have m < 2w, the
representation of 0 <= x < m is simply one word; low-weight primes offer an
efficient method for modular reduction. Examples that use such arithmetic include

Optimal Extension Fields (OEF) which can provide an efficient underpinning for ECC;
torus based constructions such as T30; and the use of Residue Number Systems
(RNS) to implement RSA. Issues of security aside, the use of such systems is

attractive as operations modulo m may be more efficiently realised by integer based
machine operations. This fact is reinforced by the aforementioned potential for
parallelism; for example, addition operations in an OEF can be computed in a

component-wise manner which directly maps onto SIMD instruction sets. However,
the focus on use of integer operations in implementation of operations modulo large
and small numbers ignores the capability for efficient floating point computation

within commodity desktop class processors. This feature is often ignored and the
related resources are left idle: from the perspective of efficiency we would like to
utilise the potential for floating point arithmetic to accelerate our implementations.

Examples of this approach are provided in work by Bernstein which outline high-
performance floating point based implementations of primitives such as Poly1305
and Curve25519. Beyond algorithmic optimisation, use of floating point hardware in

general purpose processors such as the Intel Pentium 4 offered Bernstein some

11 | P a g e

significant advantages. Specifically, floating point operations can often be executed
in parallel with integer operations; there is often a larger and more orthogonally

accessible floating point register file available; good scheduling of floating point
operations can often yield a throughput close to one operation per-cycle. Further
motivation for use of this type of approach is provided by the recent availability of

programmable, highly SIMD-parallel floating point co-processors in the form of
Graphics Processing Units (GPU). Driven by market forces these devices have
developed at a rate that has outpaced Moore‘s Law: for example, the Nvidia 7800-

GTX uses 300 million transistors to deliver roughly 185 Gflop/s in contrast with the
55 million transistor Intel Pentium 4 which delivers roughly 7 Gflop/s. Although

general purpose use of the GPU is an emerging research area, until recently the only
published prior usage for cryptography was by Cook et al. who implemented block
and stream ciphers using the OpenGL command-set; we are aware of no previous

work accelerating computationally expensive public key primitives. Further, quoted
performance results in previous work are somewhat underwhelming, with the GPU
executing AES at only 75% the speed of a general purpose processor. This was

recently improved, using modern GPU hardware, by Harrison and Waldron who also
highlight the problems of overhead in communication with the card and miss
reporting of host processor utilisation while performing GPU computation. This paper

seeks to gather together all three strands of work described above. Our overall aim
is arithmetic modulo a large number so we can execute operations required in the
RSA public key cryptosystem; we implement this arithmetic with an RNS based

approach which performs arithmetic modulo small floating point values. The end
result is an implementation which firstly fits the GPU programming model, and
secondly makes effective use of SIMD-parallel floating point operations on which

GPU performance relies. We demonstrate that with some caveats, this
implementation makes it possible to improve performance using the GPU versus that
achieved using a general purpose processor (or CPU). An alternative approach is

recent work implementing a similar primitive on the IBM Cell, another media-biased
vector processor. However, the radically different special purpose architecture of the

GPU makes the task much more difficult than on the general purpose IBM Cell,
hence our differing approach. We organise the paper as follows. In Section 2 we
give an overview of GPU architecture and capabilities. We use Section 3 to describe

the algorithms used to implement modular exponentiation in RNS before describing
the GPU implementation in Section 4. The experimental results in Section 4.3
compare the GPU implementation with one on a standard CPU, with conclusions in

Section 5.

Title:

GPU Cluster for High Performance Computing

Author:

Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover

12 | P a g e

Description:

The GPU, which refers to the commodity off-the-shelf 3D graphics card, is
specifically designed to be extremely fast at processing large graphics data sets
(e.g., polygons and pixels) for rendering tasks. Recently, the use of the GPU to

accelerate non-graphics computation has drawn much attention. This kind of
research is propelled by two essential considerations:

Price/Performance Ratio: The computational power of today‘s commodity GPUs
has exceeded that of PC-based CPUs. For example, the nVIDIA GeForce 6800 Ultra,

recently released, has been observed to reach 40 GFlops in fragment processing. In
comparison, the theoretical peak performance of the Intel 3GHz Pentium4 using SSE
instructions is only 6 GFlops. This high GPU performance results from the following:

 (1) A current GPU has up to 16 pixel processors and 6 vertex processors that
execute 4-dimensional vector float- ing point instructions in parallel;
 (2) pipeline constraint is enforced to ensure that data elements stream

through the processors without stalls; and
 (3) unlike the CPU, which has long been recognized to have a memory
bottleneck for massive computation, the GPU uses fast on-board texture memory

which has one order of magnitude higher bandwidth (e.g., 35.2GB/sec on the
GeForce 6800 Ultra). At the same time, the booming market for computer games
drives high volume sales of graphics cards which keeps prices low compared to other

specialty hardware. As a result, the GPU has become a commodity SIMD machine on
the desktop that is ready to be exploited for computation exhibiting high compute
parallelism and requiring high memory bandwidth.

Evolution Speed: Driven by the game industry, GPU performance has
approximately doubled every 6 months since the mid-1990s, which is much faster

than the growth rate of CPU performance that doubles every 18 months on average
(Moore‘s law), and this trend is expected to continue. This is made possible by the

explicit parallelism exposed in the graphics hardware. As the semiconductor
fabrication technology advances, GPUs can use additional transistors much more
efficiently for computation than CPUs by increasing the number of pipelines.

Recently, the development of GPUs has reached a new high-point with the addition
of single-precision 32bit floating point capabilities and the high level language
programming interface, called Cg. The developments mentioned above have

facilitated the abstraction of the modern GPU as a stream processor. Consequently,
mapping scientific computation onto the GPU has turned from initially hardware
hacking techniques to more of a high level designing task. Many kinds of

computations can be accelerated on GPUs including sparse linear system solvers,
physical simulation, linear algebra operations, partial difference equations, fast
Fourier transform, level-set computation, computational geometry problems, and

also non-traditional graphics, such as volume rendering, ray-tracing, and flow
visualization. (We refer the reader to the web site of General-Purpose Computation
Using Graphics Hardware (GPGPU)for more information.) Whereas all of this work

has been limited to computing small-scale problems on a single GPU, in this paper
we address the large scale computation on a GPU cluster. Inspired by the attractive

Flops/$ ratio and the projected development of the GPU, we believe that a GPU

13 | P a g e

cluster is promising for data-intensive scientific computing and can substantially
outperform a CPU cluster at the equivalent cost. Although there have been some

efforts to exploit the parallelism of a graphics PC cluster for interactive graphics
tasks, to the best of our knowledge we are the first to develop a scalable GPU
cluster for high performance scientific computing and large-scale simulation. We

have built a cluster with 32 computation nodes connected by a 1 Gigabit Ethernet
switch. Each node consists of a dual-CPU HP PC with an nVIDIA GeForce FX 5800
Ultra — the GPU that cost $399 in April 2003. By adding 32 GPUs to this cluster, we

have increased the theoretical peak performance of the cluster by 512 Gflops at a
cost of only $12,768. As an example application, we have simulated airborne

contaminant dispersion in the Times Square area of New York City. To model
transport and dispersion, we use the computational fluid dynamics (CFD) model
known as the Lattice Boltzmann Method (LBM), which is second order accurate and

can easily accommodate complex-shaped boundaries. Beyond enhancing our
understanding of the fluid dynamics processes governing dispersion, this work will
support the prediction of airborne contaminant propagation so that emergency

responders can more effectively engage their resources in response to urban
accidents or attacks. For large scale simulations of this kind, the combined
computational speed of the GPU cluster and the linear nature of the LBM model

create a powerful tool that can meet the
requirements of both speed and accuracy. In the context of modeling contaminant
transport, Brown et al. have presented an approach for computing wind fields and

simulating contaminant transport on three different scales: mesoscale, urban scale
and building scale. The system they developed, called HIGRAD, computes the flow
field by using a second-order accurate finite difference approximation of the Navier-

Stokes equations and doing large eddy simulation with a small time step to resolve
turbulent eddies. These simulations required a few hours on a supercomputer or
cluster to solve a 1:6 km £1:5 km area in Salt Lake City at a grid spacing of 10

meters (grid resolution: 160£150£36). In comparison, our method is also
secondorder accurate, incorporates a more detailed city model, and can simulate the

Times Square area in New York City at a grid spacing of 3.8 meters (grid resolution:
480 £ 400 £ 80) with small vortices in less than 20 minutes. This paper is organized
as follows: Section 2 illustrates

how the GPU can be used for non-graphics computing. Section 3 presents our GPU
cluster, called the Stony Brook Visual Computing Cluster. In Section 4, we detail our
LBM implementation on the GPU cluster, followed by the performance results and a

comparison with our CPU cluster. Section 5 presents our dispersion simulation in the
Times Square area of New York City. In Section 6, we discuss other potential usage
of the GPU cluster for scientific computations. Finally, we conclude in Section 7.

Title:

Implementation of public key algorithms in CUDA
Author:

Hao Wu

14 | P a g e

Description:

In the field of cryptography, public key algorithms are widely known to be slower
than symmetric key alternatives for the reason of their basis in modular arithmetic.
The modular arithmetic in e.g. RSA and Diffie Hellman is computationally heavy

when compared to symmetric algorithms relying on simple operations like shifting of
bits and XOR. Therefore, how to make a more efficient and faster implementation of
public key algorithms is publicly concerned. With the development of the GPGPU

(General-purpose computing on graphics processing units) field, more and more
computing problems are solved by using the parallel property of GPU (Graphics

Processing Unit). CUDA (Compute Unified Device Architecture) is a framework which
makes the GPGPU more accessible and easier to learn for the general population of
programmers. This is because it builds on C and hides many of the complicated

details of how the GPU works from a CUDA developer. Using the unique properties
of the GPU through CUDA has greatly increased the efficiency of many
computational problems. Multiplication of big integers is one of the building blocks in

doing modular arithmetic. Running the public key algorithms by use of the parallel
properties of the GPU in modular multiplication and modular exponentiation may be
a solution to this problem.

The target in this research is to study and analyse the majority of algorithms related
to the modular multiplication and modular exponentiation, and then to design and

make an implementation of a public key algorithm in CUDA. Finally, this project will
compare the performance between the GPU implementation and the CPU
implementation in order to look into the possibility of improving the performance of

public key algorithms. The research questions are divided into four groups, the first
one regarding modular multiplication and modular exponentiation of big integers and
their parallelism, the second one about integrating parallel modular multiplication

and modular exponentiation into the public key algorithm, the third one concerning
optimization of the algorithm, and final one regarding performance comparison of

public key algorithm between the GPU implementation and the CPU implementation.

Title:

RSA Algorithm

Author:

En.wikipedia.org

Description:

RSA is an algorithm for public-key cryptography that is based on the presumed

difficulty of factoring large integers, the factoring problem. RSA stands for Ron
Rivest, Adi Shamir and Leonard Adleman, who first publicly described it in 1978. A
user of RSA creates and then publishes the product of two large prime numbers,

along with an auxiliary value, as their public key. The prime factors must be kept

15 | P a g e

secret. Anyone can use the public key to encrypt a message, but with currently
published methods, if the public key is large enough, only someone with knowledge

of the prime factors can feasibly decode the message.

The RSA algorithm involves three steps: key generation, encryption and decryption.

Key generation

RSA involves a public key and a private key. The public key can be known to
everyone and is used for encrypting messages. Messages encrypted with the public
key can only be decrypted using the private key. The keys for the RSA algorithm are

generated the following way:

1. Choose two distinct prime numbers p and q.

o For security purposes, the integers p and q should be chosen at
random, and should be of similar bit-length. Prime integers can be

efficiently found using a primality test.
2. Compute n = pq.

o n is used as the modulus for both the public and private keys

3. Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient function.
4. Choose an integer e such that 1 < e < φ(n) and greatest common

denominator of (e,φ(n)) = 1, i.e. e and φ(n) are coprime.

o e is released as the public key exponent.
o e having a short bit-length and small Hamming weight results in more

efficient encryption - most commonly 0x10001 = 65537. However,

small values of e (such as 3) have been shown to be less secure in
some settings.

5. Determine d = e–1 mod φ(n); i.e. d is the multiplicative inverse of e mod

φ(n).
o This is more clearly stated as solve for d given (d*e)mod φ(n) = 1
o This is often computed using the extended Euclidean algorithm.

o d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent
e. The private key consists of the modulus n and the private (or decryption)
exponent d which must be kept secret.

Encryption

Alice transmits her public key (n,e) to Bob and keeps the private key secret. Bob
then wishes to send message M to Alice.

He first turns M into an integer m, such that 0 < m < n by using an agreed-upon
reversible protocol known as a padding scheme. He then computes the cipher text c
corresponding to

c = me (mod n).

16 | P a g e

This can be done quickly using the method of exponentiation by squaring. Bob then
transmits c to Alice.

Note that at least nine values of m will yield a cipher text c equal to m, But this is
very unlikely to occur in practice.

Decryption

Alice can recover m from c by using her private key exponent d via computing

m = cd (mod n).

Given m, she can recover the original message M by reversing the padding scheme.

3.2 Literature Summary:

 From the above literature survey, we come to conclusion that we are having
massively parallel processors (Graphics Cards) at our disposal thus giving us great

computing power. We could harness this power and utilize it in implementing many
tasks in parallel. One of the applications of this could be implementation of RSA
algorithm on the GPU. RSA algorithm performs a lot of modular multiplications that

are slow on CPU as compared to that on GPU as GPUs have a lot of processors and
hence this process could be parallelized on GPUs and we could get a get
performance boost in encryption and decryption of text using RSA algorithm. We can

also conclude that if we perform the tasks on GPU clusters, flops per dollar ratio is
low and hence GPU is far cheaper in case of computation than CPU.

17 | P a g e

4. SYSTEM DESIGN

4.1 High-Level Design:

4.1.1 For RSA Algorithm

 USE CASE

 Here in the use case diagram, there are five characters and they are users, RSA program,
CPU and GPU. Here the user can do encryption/decryption only by using the UI provided.

18 | P a g e

 FLOW CHART

19 | P a g e

4.1.2 For Dense Matrix-Matrix Multiplication

 USE CASE

Here in the use case diagram, there are five characters and they are users, Matrix

Multiplication Program, CPU and GPU. Here the user can do Multiplication only by using the
UI provided.

20 | P a g e

 FLOW CHART

21 | P a g e

4.2 Low-Level Design:

4.2.1 For RSA Algorithm

 Start the program.
 Import the necessary packages.

 Generate two prime numbers and test for their primality.
 Calculate p, q, e, and d in the program.

 Perform Encryption and show the encrypted cipher text.

 After that in order to demonstrate the decryption using RSA, apply
decryption algorithm and decrypt the cipher text and show the result
to the user.

 End the program.

4.2.2 For Dense Matrix-Matrix Multiplication Algorithm

 Start the program.

 Import the necessary packages.

 Get input for the Dimension of the Matrix.
 Perform Matrix Multiplication

 End the program.

4.3 Test Cases Generation

4.3.1 For RSA Algorithm

 Table 4.3.1.1 Test Cases for RSA Encryption and Decryption

Msg Size

CPU(Encryption)

(Time taken in
ms)

GPU(Encryption)

(Time taken in
ms)

CPU(Decryption)

(Time taken in
ms)

GPU(Decryption)

(Time taken in
ms)

100 16 30.56 65 408.5

200 31 33.09 126 427.67

300 47 34.45 189 440.82

400 63 34.45 254 440.83

500 79 34.46 314 442.23

600 93 34.46 382 452.07

700 109 34.46 438 452.1

800 127 34.41 504 462.68

900 142 34.44 565 462.89

1000 160 34.46 681 463.18

1100 171 34.46 706 475.1

1200 188 34.45 758 475.31

1300 209 34.48 819 488.3

22 | P a g e

1400 221 34.46 889 489.94

1500 237 34.47 944 490.9

1600 249 34.46 1006 508.36

1700 291 34.46 1071 508.962

1800 284 34.44 1129 527.77

1900 299 34.47 1197 532.64

2000 314 34.44 1257 532.96

2100 326 34.45 1320 533.23

2200 348 34.45 1379 532.88

2300 361 34.44 1467 532.86

2400 374 34.45 1507 533.08

2500 393 34.46 1568 533.36

2600 413 34.46 1637 532.9

2700 420 34.48 1695 532.85

2800 435 34.48 1758 532.92

2900 452 34.52 1823 532.97

3000 478 34.45 1917 532.9

3100 487 34.45 1948 533.13

3200 498 33.42 2020 530.71

3300 513 33.42 2070 531.1

3400 530 33.39 2136 530.78

3500 547 33.4 2202 530.74

3600 564 33.38 2259 531.06

3700 581 33.42 2387 530.74

3800 594 33.4 2406 531.02

3900 608 33.36 2448 531.09

4000 624 35.2 2517 534.75

4500 701 68.72 2827 671.2

5000 780 69.18 3140 671.64

5500 859 70.19 3454 671.12

6000 938 68.75 3772 670.27

6500 1016 68.77 4085 672.17

7000 1096 68.77 4399 671.32

8000 1252 69.26 5034 670.32

9000 1411 103.47 5658 808.79

10000 1570 103.44 6289 808.01

11000 1738 104.42 6929 807.74

12000 1892 103.03 7555 808.01

13000 2052 137.28 8188 945.57

14000 2217 137.28 8823 944.59

15000 2373 137.36 9484 944.57

16000 2534 137.36 10086 947.2

17000 2705 172.99 10731 1081.64

18000 2864 172.09 11354 1083.07

19000 3030 171.65 11991 1081.54

23 | P a g e

20000 3195 173.04 12638 1083.01

21000 3352 205.85 13264 1218.1

22000 3521 205.88 13900 1219.18

23000 3683 208.52 14533 1220.01

24000 3849 205.94 15179 1220.93

25000 4020 240.07 15819 1356.27

26000 4179 240.51 16455 1357.09

27000 4352 240.21 17089 1356.57

28000 4514 240.23 17723 1357.14

29000 4688 274.37 18363 1493.41

30000 4857 274.84 19002 1493.89

31000 5023 275.03 19659 1495.64

32000 5194 274.51 20287 1493.88

33000 5366 308.7 20933 1925.55

34000 5557 309.151 21631 1965.71

34500 5622 308.68 21904 1999

4.3.2 For Dense Matrix-Matrix Multiplication Algorithm

Table 4.3.2.1 Test Cases for Dense Matrix-Matrix Multiplication

Matrix
dimension

CPU

(Time taken in
ms)

GPU

(Time taken in
ms)

50

4

0.292

100

50

1.109

150

109

3.742

200

271

6.917

250

512

17.132

300

893

26.009

350

1410

42.822

400

2106

38.749

450

3152

96.954

500

4265

138.614

550

6499

179.884

600

8555

189.32

650

11369

288.29

700

14424

332.938

750

17665

455.066

800

21347

316.723

850

26511

662.75

900

31266

754.819

950

37201

908.077

24 | P a g e

1000

43749

906.041

1050

51895

1264.69

Table 4.3.2.2 Test Cases for Dense Matrix-Matrix Multiplication (GPU only)

Matrix

Dimension

GPU (Time
Taken in

ms)

50 0.292

100 1.109

150 3.742

200 6.917

250 17.132

300 26.009

350 42.822

400 38.749

450 96.954

500 138.614

550 179.884

600 189.32

650 288.29

700 332.938

750 455.066

800 316.723

850 662.75

900 754.819

950 908.077

1000 906.041

1050 1264.69

1100 1308.25

1200 1025.76

1300 2593.94

1400 2562.16

1500 2701.15

2000 2698.79

2500 2815.94

3000 2595.73

3500 2917.93

4000 2655.18

4500 2602.11

5000 2766.64

5500 2659.58

25 | P a g e

5. System Implementation

5.1 Description on the software used:

The various softwares and SDKs used in implementing the project are as follows

a) Nvidia CUDA toolkit v4.0.17 (32 Bit)
b) Nvidia GPU computing SDK v4.0.17 (32 Bit)

c) Nvidia Parallel NSight (32 Bit)
d) Microsoft Visual Studio 2010 Ultimate

The description of above mentioned softwares and SDKs are as follows

a) Nvidia CUDA toolkit v4.0.17: The NVIDIA CUDA Toolkit provides a

comprehensive development environment for C and C++ developers
building GPU accelerated applications. The CUDA Toolkit includes a
compiler for NVIDIA GPUs, math libraries, and tools for debugging and

optimizing the performance of the applications. We also find
programming guides, user manuals, API reference, and other
documentation. It comprises of CUDA C/C++ compiler, GPU Debugging

and Profiling tools, GPU-accelerated math libraries, ad GPU accelerated
performance primitives.

Key Features

 CUDA Libraries

o cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust
 Development Tools

o NVIDIA CUDA C/C++ Compiler (NVCC)

o Visual Profiler, CUDA-GDB Debugger, CUDA-MEMCHECK
 Support for Windows, Linux and MacOS

b) Nvidia GPU computing SDK v4.0.17: The NVIDIA GPU computing SDK
provides various math libraries such as CUBLAS for performing various
algebraic operations. Matrix-Matrix Multiplication, Matrix-vector

multiplication, and Vector-vector multiplications are provided in this library
by Nvidia.

c) Nvidia Parallel NSight: NVIDIA Parallel Nsight brings GPU Computing

into Microsoft Visual Studio. We can build, Debug, Profile and Trace
heterogeneous compute and graphics applications using CUDA C/C++,
OpenCL, DirectCompute, Direct3D, and OpenGL.

26 | P a g e

d) Microsoft Visual Studio 2010: Microsoft Visual Studio is a powerful IDE
that ensures quality code throughout the entire application lifecycle, from

design to deployment. This IDE is used in doing coding for the project.

5.2 Description on Methods/functions used:

 There are various programs written in this project and a comparison of
performance of them over CPU and GPU is done. Hence each algorithm contains an
implementation that uses only CPU as well as implementation that uses only GPU. All

the functions used in every implementation is described below:

a) CPU implementation of RSA Algorithm
o The display() function: This function is used by the program to

display the computed values of n, p, q, phi, e and d used by the RSA

Algorithm.
o The generatePandQ() function: This function is used by the

program to compute two randomly generated prime numbers p and q

that are used in various computations in RSA algorithm.
o The generateEandD() function: This function is written to calculate

the values of public key e and private key d that is used in performing

encryption and decryption of the text.
o The extEuclidean() function: This function is used to find the

greatest common divisor of two numbers. Used in calculating e from

phi and d from e and phi.
o The gcd() function: This function is used by extEuclidean() function

in calculating greatest common divisor.

o The isPrime() function: This function is used to test the primality of
the randomly generated number.

o The encryption() function: This function is used to perform the
encryption of the text.

o The decryption() function: This function is used to perform the

decryption of the text.
o The double diffclock() function: This function is used to calculate

the difference between two times.
o The chargen() function: This function is used to generate random

characters in message to be used in RSA encryption.
o The main() function: This function is used to perform the execution

of program and call all the user defined functions.

27 | P a g e

b) GPU implementation of RSA Algorithm
o The display() function: This function is used by the program to

display the computed values of n, p, q, phi, e and d used by the RSA
Algorithm.

o The generatePandQ() function: This function is used by the

program to compute two randomly generated prime numbers p and q
that are used in various computations in RSA algorithm.

o The generateEandD() function: This function is written to calculate

the values of public key e and private key d that is used in performing
encryption and decryption of the text.

o The extEuclidean() function: This function is used to find the
greatest common divisor of two numbers. Used in calculating e from
phi and d from e and phi.

o The gcd() function: This function is used by extEuclidean() function
in calculating greatest common divisor.

o The isPrime() function: This function is used to test the primality of

the randomly generated number.
o The modular_mult() function: This function is used to perform the

encryption/decryption of the text using GPU.
o The chargen() function: This function is used to generate random

characters in message to be used in RSA encryption.
o The main() function: This function is used to perform the execution

of program and call all the user defined functions.

c) CPU implementation of matrix multiplication:

o The main() function: This function first generates two matrices of

given dimensions, stores it in an array, and then reads it and finally
perform the matrix multiplication over CPU.

o The double diffclock() function: This function is used to calculate

the difference between two times.

d) GPU implementation of matrix multiplication:

o The MatMul() function: This function is used to transfer the

matrices from CPU to the memory of GPU, and then after the
completion of computation again transfer result from GPU to CPU and
free the memories allocated in GPU.

o The MatMulKernel() function : This function is used to perform
matrix multiplication of two matrices on GPU in a parallel manner. It
creates a thread for each element for multiplication on GPU thereby

gaining massive parallelism in matrix multiplication.
o The main() function: This function first generates two matrices of

given dimensions, stores it in an array, and then reads it and finally

perform the matrix multiplication over GPU.

28 | P a g e

5.3 Module wise implementation description:

a) Module 1: This module is the CPU implementation of RSA Algorithm.
In this module, the RSA algorithm is implemented using C++ that
utilizes CPU for encryption and decryption of text. It involves

generation of pseudo prime numbers for calculating phi for the RSA
Algorithm. Using the value of p, q, and phi, the public key ‗e‘ and the

private key ‗d‘ is calculated for encryption and decryption of the text
respectively.

b) Module 2: This module is the GPU implementation of RSA Algorithm.
In this module, the RSA algorithm is implemented using C++ that
utilizes GPU for encryption and decryption of text. It involves

generation of pseudo prime numbers for calculating phi for the RSA
Algorithm. Using the value of p, q, and phi, the public key ‗e‘ and the
private key ‗d‘ is calculated for encryption and decryption of the text

respectively. The encryption and decryption of text requires modular
multiplication. In this module, the modular multiplication is performed
over Graphics Processing Unit (GPU).

c) Module 3: In this module, the implementation of multiplication of
matrices of given dimension is done that utilizes CPU for performing

computations. Here two matrices that contain randomly generated
floating point numbers are generated and are used by CPU in order to

calculate the Matrix Multiplication of both the matrices.

d) Module 4: The module 4 comprises of implementation of matrices of

given dimension that utilizes GPU for performing the matrix
computations in a parallel manner. Each thread on GPU is used to
compute the value of single element. Here two matrices that contain

randomly generated floating point numbers are generated. The
matrices are then transferred to the GPU memory for computation, the
calculations are carried out, and the results are then sent again to CPU.

Here it gets stored in a matrix.

29 | P a g e

5.4 Code

5.4.1 Code for CPU implementation of RSA Algorithm:

/*
This algorithm can encrypt a message < n where n is product of two prime
numbers....

*/
#include<…..> //Contains all the include files used
#define CHAR_GEN 4500

using namespace std;
long long int n,p,q,m,phi,e,d;
char message[100000];

void generatePandQ();

int isPrime(long long int&);
void display();
void generateEandD();

double diffclock(clock_t clock1,clock_t clock2)
{
 double diffticks=clock1-clock2;

 double diffms=(diffticks*1000)/CLOCKS_PER_SEC;
 return diffms;
}

long long int gcd(long long int , long long int);
void extEuclidean(long long int , long long int , long long int &, long long int
&);

long long int encryption(long long int);
long long int decryption(long long int);

void display()
{
 cout << "n =\t" << n << endl;

 cout << "p =\t" << p <<endl;
 cout << "q =\t" << q << endl;

 cout << "phi =\t" << phi << endl;
 cout << "e =\t" << e << endl;
 cout << "d =\t" << d << endl;

}

void generatePandQ()

{
 //algorithm for generating p and q used in the RSA Algorithm
}

30 | P a g e

void generateEandD()
{

//algorithm for generating public and private keys e and d used in the RSA
Algorithm

}

void extEuclidean(long long int a,long long int b, long long int &lastx, long
long int &lasty)

{
 //algorithm for finding gcd

}

long long int gcd(long long int a, long long int b)

{
 //algorithm for finding gcd
}

int isPrime(long long int &x)
{

 long long int lim,i;
 if(x % 2 == 0)
 return 0;

 lim = (long long int)sqrt((double)x);
 for(i = 3; i <= lim ; i += 2)
 if(x % i == 0)

 return 0;
 return 1;
}

long long int encryption(long long int msg)

{
 //encryption algorithm
}

long long int decryption(long long int e_msg)
{

 //decryption algorithm
}
void chargen()

{
 int i;
 int ch=65;

 for(i=0;i<CHAR_GEN;i++)
 {
 message[i]=(char)ch;

 ch++;
 if(ch==123)

 {

31 | P a g e

 ch=65;
 }

 }
 message[i]='\0';
}

int main()
{

 int i;
 long long int e_msg=0,d_msg=0,*emsg,*dmsg;

 generatePandQ();
 generateEandD();
 display();

 chargen();
 emsg = new long long int[strlen(message)];
 dmsg = new long long int[strlen(message)];

 cout<<"Message size used : "<<CHAR_GEN<<endl;
 clock_t begin=clock();
 for(i=0;i<strlen(message);i++)

 {
 e_msg = encryption((long long int)message[i]);
 emsg[i]=e_msg;

 }
 clock_t end=clock();
 cout << "Encryption Time : " << double(diffclock(end,begin)) << "

ms"<< endl;
 begin=clock();
 for(i=0;i<strlen(message);i++)

 {
 d_msg = decryption((long long int)emsg[i]);

 dmsg[i]=d_msg;
 }
 end=clock();

 cout << "Decryption Time : " << double(diffclock(end,begin)) << "
ms"<< endl;
 getch();

 return 0;
}

5.4.2 Code for GPU implementation of RSA Algorithm:

#include<…..> //Contains all the include files used

#define CHAR_GEN 34500
using namespace std;

char message[100000];
long long int n,p,q,phi,e,d;
long long int *emsg,*dmsg,*emsg_d,*dmsg_d;

long long int size;

32 | P a g e

void generatePandQ();
int isPrime(long long int&);

void display();
void generateEandD();
long long int gcd(long long int , long long int);

void extEuclidean(long long int , long long int , long long int &, long long int &);
long long int encryption(long long int);
long long int decryption(long long int);

__global__ void modular_mult(long long int size,long long int* emsg_d,int n_d,int
e_d)

{
 //algorithm for performing modular multiplication
}

void display()
{

 cout << "n =\t" << n << endl;
 cout << "p =\t" << p <<endl;
 cout << "q =\t" << q << endl;

 cout << "phi =\t" << phi << endl;
 cout << "e =\t" << e << endl;
 cout << "d =\t" << d << endl;

}

void generatePandQ()
{

 //algorithm for generating two random prime numbers
}

void generateEandD()
{

 //algorithm for generating public key and private key for RSA encryption
}

void extEuclidean(long long int a,long long int b, long long int &lastx, long long int
&lasty)
{

//algorithm for finding GCD
}

long long int gcd(long long int a, long long int b)
{
 long long int temp = 0;

 while(b != 0)
 {

 temp = a;

33 | P a g e

 a = b;
 b = temp % b;

 }
 return a;
}

int isPrime(long long int &x)
{
 long long int lim,i;

 if(x % 2 == 0)
 return 0;

 lim = (long long int)sqrt((double)x);
 for(i = 3; i <= lim ; i += 2)
 if(x % i == 0)

 return 0;
 return 1;
}

void chargen()
{
 long long int i;

 int ch=65;
 for(i=0;i<CHAR_GEN;i++)
 {

 message[i]=(char)ch;
 ch++;
 if(ch==123)

 {
 ch=65;
 }

 }
 message[i]='\0';

}
int main()
{

 long long int m=1;
 long long int i,N=50000;

 generatePandQ();
 generateEandD();
 display();

 chargen();
 cout<<"Message Size : "<<CHAR_GEN<<endl;
 size=strlen(message);

 emsg = new long long int[size];
 dmsg = new long long int[size];
 //Algorithm for kernel invocation

 unsigned int timer_rsa=0;
 unsigned int timer_rsa_dec=0;

 cutilCheckError(cutCreateTimer(&timer_rsa));

34 | P a g e

 cutilCheckError(cutStartTimer(timer_rsa));
 modular_mult<<<blocksPerGrid, threadsPerBlock>>>(size,emsg_d,(int)n,(int)e);

 cudaDeviceSynchronize();
 cutilSafeCall(cudaMemcpy(emsg, emsg_d, size, cudaMemcpyDeviceToHost)
);

 cutilCheckError(cutStopTimer(timer_rsa));
 double dSeconds = cutGetTimerValue(timer_rsa)/((double)1 * 1000.0);
 cout<<"Encryption Time = "<<dSeconds*1000<<"ms"<<endl;

 for(i=0;i<size;i++)
 {

 dmsg[i]=emsg[i];
 }
 cutilCheckError(cutCreateTimer(&timer_rsa_dec));

 cutilCheckError(cutStartTimer(timer_rsa_dec));
 cutilSafeCall(cudaMemcpy(dmsg_d, dmsg, size, cudaMemcpyHostToDevice)
);

 modular_mult<<<blocksPerGrid,
threadsPerBlock>>>(size,dmsg_d,(int)n,(int)d);
 cudaDeviceSynchronize();

 cutilSafeCall(cudaMemcpy(dmsg, dmsg_d, size, cudaMemcpyDeviceToHost)
);
 cutilCheckError(cutStopTimer(timer_rsa_dec));

 dSeconds = cutGetTimerValue(timer_rsa_dec)/((double)1 * 1000.0);
 cout<<"Decryption Time = "<<dSeconds*1000<<"ms"<<endl;
 getch();

 return 0;
}

5.4.3 Code for CPU implementation of Dense Matrix-Matrix

Multiplication:

#include<…..> //Contains all the include files used
using namespace std;
int max_mul=1050;

double diffclock(clock_t clock1,clock_t clock2)
{
 double diffticks=clock1-clock2;

 double diffms=(diffticks*1000)/CLOCKS_PER_SEC;
 return diffms;

}
int main()
{

 float *a,*b,*c;
 long long int i,j,k;
 a=(float*)malloc(max_mul*max_mul*sizeof(float));

 b=(float*)malloc(max_mul*max_mul*sizeof(float));

35 | P a g e

 c=(float*)malloc(max_mul*max_mul*sizeof(float));
 for(i=0;i<max_mul;i++)

 {
 for(j=0;j<max_mul;j++)
 {

 a[i * max_mul + j]=(rand() / (float)RAND_MAX);
 b[i * max_mul + j]=(rand() / (float)RAND_MAX);
 }

 }
 clock_t begin=clock();

 for(i=0;i<max_mul;i++)
 {
 for(j=0;j<max_mul;j++)

 {
 c[i * max_mul + j]=0;
 for(k=0;k<max_mul;k++)

 {
 c[i * max_mul + j]=c[i * max_mul + j]+a[i *
max_mul + k]*b[k * max_mul + j];

 }
 }
 }

 clock_t end=clock();
 cout << "Multiplication Time : " << double(diffclock(end,begin)) << "
ms"<< endl;

 getch();
 return 0;

}

5.4.4 Code for GPU implementation of Dense Matrix-Matrix

Multiplication:

#include<…..> //Contains all the include files used

#define MIN 0
#define MAX 3000
#define BLOCK_SIZE 16

using namespace std;
typedef struct

{
 int width;
 int height;

 float* elements;
} Matrix;

36 | P a g e

__global__ void MatMulKernel(const Matrix A, const Matrix B, Matrix C)
{

 //algorithm for performing matrix multiplication on parallel architecture
}

void MatMul(const Matrix A, const Matrix B, Matrix C)
{

 //contains the code for copying data from host to device
 //Then the matrixmulkernel is invoked and result thus obtained

 //are copied to host from device
}

int main()
{
 Matrix l_a,l_b,l_c;

 l_a.width=l_a.height=l_b.width=l_b.height=l_c.width=l_c.height=MAX
;
 int i,j;

 l_a.elements=(float*)malloc(l_a.width*l_a.height*sizeof(float));
 l_b.elements=(float*)malloc(l_b.width*l_b.height*sizeof(float));
 l_c.elements=(float*)malloc(l_c.width*l_c.height*sizeof(float));

 for(i=MIN;i<MAX;i++)
 {
 for(j=MIN;j<MAX;j++)

 {
 l_a.elements[i*MAX+j]=(rand() /

(float)RAND_MAX);
 l_b.elements[i*MAX+j]=(rand() /
(float)RAND_MAX);

 }
 }
 MatMul(l_a,l_b,l_c);

 return 0;
}

37 | P a g e

6. Results and Discussion:

6.1 Output / Results:

a) Output for CPU Implementation of RSA Algorithm

Fig 6.1.1 shows the output of the RSA Algorithm program that is implemented on
CPU. The CPU implementation of RSA Algorithm implemented using C++ utilizes

CPU for encryption and decryption of text. It involves generation of pseudo prime
numbers for calculating phi for the RSA Algorithm. Using the value of p, q, and phi,
the public key ‗e‘ and the private key ‗d‘ is calculated for encryption and decryption

of the text respectively.

38 | P a g e

b) Output for GPU Implementation of RSA Algorithm

Fig 6.1.2 shows the output of the RSA Algorithm program that is implemented on

GPU. The GPU implementation of RSA Algorithm is implemented using C++ that
utilizes GPU for encryption and decryption of text. It involves generation of pseudo
prime numbers for calculating phi for the RSA Algorithm. Using the value of p, q,

and phi, the public key ‗e‘ and the private key ‗d‘ is calculated for encryption and
decryption of the text respectively. The encryption and decryption of text requires
modular multiplication. In this module, the modular multiplication is performed over

Graphics Processing Unit (GPU).

39 | P a g e

c) Output for CPU Implementation of n-Dimension Dense Matrix-Matrix
multiplication:

Fig 6.1.3 shows the output of the Dense Matrix-Matrix Multiplication program that is
implemented on CPU. The Matrices are randomly generated and the time taken in
performing the computation is displayed.

40 | P a g e

d) Output for GPU Implementation of 320 X 320 Matrix multiplication:

Fig 6.1.4 shows the output of the Dense Matrix-Matrix Multiplication program that is
implemented on GPU. The Matrices are randomly generated and the time taken in

performing the computation is displayed.

6.2 Result Analysis:

 The results that are generated after implementing the above mentioned four

modules needs to be compared on the basis of time taken by each implementation
i.e. the time taken by the CPU implementation vs. the time take by GPU

implementation of the same algorithm. The time taken to perform
Encryption/Decryption of RSA algorithm, and also time taken for performing matrix
multiplication on both CPU as well as GPU is calculated. The results thus obtained is

compared to show the findings whether the CPU implementation take less time or
GPU implementation of the same algorithm takes less time.

41 | P a g e

Figure 6.2.1 shows the time taken by CPU in performing encryption using RSA
Algorithm with respect to that of time taken by GPU in doing the same. The number
of characters in a message taken for performing the encryption is shown on x-axis
and time taken in performing the encryption corresponding to the given message
length is shown on y-axis. It can be inferred from the graph that initially the
performance of CPU is better as compared to that of GPU when there are less
number of characters in message. As the number of characters in message increases,
the GPU takes less time in comparison to that with CPU in performing the Encryption
using RSA Algorithm.

42 | P a g e

Figure 6.2.2 shows the time taken by CPU in performing decryption using RSA
Algorithm with respect to that of time taken by GPU in doing the same. The number
of characters in a message taken for performing the decryption is shown on x-axis
and time taken in performing the decryption corresponding to the given message
length is shown on y-axis. It can be inferred from the graph that initially the
performance of CPU is better as compared to that of GPU when there are less
number of characters in message. As the number of characters in message increases,
the GPU takes less time in comparison to that with CPU in performing the Encryption
using RSA Algorithm.

43 | P a g e

Figure 6.2.3 shows the time taken by CPU in performing dense Matrix-Matrix
multiplication with respect to that of time taken by GPU in doing the same. The
dimension of matrix taken for performing the multiplication is shown on x-axis and
time taken in performing the multiplication corresponding to the given matrix
dimension is shown on y-axis. It can be inferred from the graph that initially the
performance of CPU is better as compared to that of GPU when there are less
number of elements in matrix i.e. the dimension of the matrix is small. As the matrix
dimension increases, the GPU takes less time in comparison to that with CPU in
performing the multiplication.

44 | P a g e

Figure 6.2.4 shows the time taken by GPU in performing dense Matrix-Matrix
multiplication. The dimension of matrix taken for performing the multiplication is
shown on x-axis and time taken in performing the multiplication corresponding to the
given matrix dimension is shown on y-axis. Here the time taken by CPU is not taken
into consideration as beyond the matrix dimension of 1000, the CPU starts taking
time in terms of minutes which is too large as compared to time taken by GPU in
performing multiplication for same matrix dimension.

6.3 Discussion:

 Driven by the insatiable market demand for real time, high-definition 3D
graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly

parallel, multithreaded, many core processor with tremendous computational
horsepower and very high memory bandwidth. It is proposed that the GPU
implementation will take less time as compared to CPU implementation as GPUs

available nowadays are capable of performing massively parallel floating point
operations in a less time and are able to achieve speed of computation in terms of

few hundred Gflops where as CPUs can perform operations in terms of Mflops.

45 | P a g e

7. Conclusion and Future Work

7.1 Conclusion:

RSA Algorithm and Dense Matrix-Matrix Multiplication on GPU using CUDA is
implemented on NVIDIA Graphics Processing Unit integrated with Central Processing

Unit. It is observed that the multithreading architecture and SIMD approach of CUDA
helps for performance improvement in a great sense. There is tremendous
difference in the results obtained on CPU and on GPU. So, CUDA programming is

one of the best approaches to optimize the time for various algorithms which require
huge amount of data, and is further suitable for operations which require floating
point arithmetic. Therefore, GPUs can be used to run various algorithms efficiently,

with their capabilities to handle floating point arithmetic and big data as well.

7.2 Scope of Future Work:

The RSA algorithm implemented in this project can further be improved by making it

to work for even millions of characters. Also we can use large size of prime numbers
in order to achieve higher level of security in RSA Encryption and Decryption. The
Dense Matrix-Matrix multiplication implemented on GPU in this project just utilizes

basic CUDA functions. They are not highly optimized. We can use CUBLAS libraries in
implementing the dense Matrix-Matrix multiplication that would give a high gain in
performance over the current implementation.

46 | P a g e

8. References:

Books

1. A. Menezes, P. van Oorschot, and S. Vanstone (1996) Hand Book of applied
cryptography.

2. David B. Kirk, and Wen-mei W. Hwu (2010) Programming Massively Parallel
Processors : A hands-on approach.

3. Gene H. Golub, and Charles F. Van Loan (2007) Matrix Computations.

4. Marcelo E. Kaihara (2011) An Implementation of RSA 2048 on GPUs using
CUDA.

Conference papers

1. Jyoti B. Kulkarni, A. A. Sawant, Vandana S. Inamdar, ―Database Processing by

Linear Regression on GPU using CUDA‖, 2011, Proceedings of the ICSCCN
2011, IEEE International Conference, Pg 20-23.

Web sites

1. RSA Algorithm, http://en.wikipedia.org/wiki/RSA_%28algorithm%29

2. CUDA C Programming Guide, Nvidia.com.

3. http://developer.nvidia.com/cuda-downloads

4. http://www.microsoft.com/visualstudio/en-in

5. Getting Started With CUDA, www.nvidia.com

6. Programming with CUDA, www.nvidia .com

47 | P a g e

