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 SYNOPSIS 

Demand in the consumer market for graphics hardware that accelerates rendering of 

3D images has resulted in Graphic Cards that are capable of delivering astonishing 

levels of performance. These results were achieved by specifically tailoring the 

hardware for the target domain. As graphics accelerators become increasingly 

programmable however, this performance has made them an attractive target for 

other domains. Graphic processing units provide a low-cost parallel computing 

architecture. It is possible to achieve massive parallelism by SIMD (Single Instruction 

Multiple Data) on General Purpose Graphics Processing Unit (GPGPU) integrated with 

Central Processing Unit (CPU). 

 

In this project, two application of different algorithmic requirements - RSA Algorithm 

and Dense Matrix-Matrix Multiplication - are taken up for implementing on a parallel 

infrastructure with acceleration programming model, Compute Unified Device 

Architecture (CUDA), which uses multithreading technique. RSA Algorithm is one of 

the algorithms for public-key cryptography that is based on the presumed difficulty 

of factoring large. RSA Algorithm using CUDA can achieve high performance. The 

Dense Matrix-Matrix Multiplication algorithm uses block algorithm for processing the 

elements using Accelerator Unit (GPU) and the CPU. The performance enhancement 

with the GPU programming is recorded. This comparison is presented for both the 

applications. 
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1. INTRODUCTION 

1.1 Background:  
 

 In today‘s era, there is a great importance to parallel programming to gain 
high performance in terms of time required for data computation. There are some 

constraints to achieve parallelism on CPU (Central Processing Unit). It is possible to 
achieve data parallelism by SIMD (Single Instruction Multiple Data) on General 
Purpose Graphics Processing Unit (GPGPU) integrated with Central Processing Unit 

(CPU). In implementing security algorithms on GPGPU, most of research is going on. 
In this project, RSA algorithm and Dense Matrix-Matrix Multiplication is implemented 
to utilize the parallel architecture of Graphic Card (GPU) using a programming model 

Compute Unified Device Architecture (CUDA) which uses multithreading technique. 
RSA algorithm is one of the security algorithms. RSA is an algorithm for public-key 
cryptography that is based on the presumed difficulty of factoring large integers, the 

factoring problem. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, 
who first publicly described it in 1978. A user of RSA creates and then publishes the 
product of two large prime numbers, along with an auxiliary value, as their public 

key. The prime factors must be kept secret. Anyone can use the public key to 
encrypt a message, but with currently published methods, if the public key is large 
enough, only someone with knowledge of the prime factors can feasibly decode the 

message. GPUs provide high computation power at low costs and have been 
described as desktop supercomputers. The GPUs have been used for many general 
purpose computations due to their low cost, high computing power, and high 

availability. The latest GPUs, for instance, can deliver close to 1 Tera Flops (TFLOPs) 
of compute power at a higher cost. The stages of were exploited for parallelism with 

the flow of execution handled serially using the pipeline in the earlier, GPGPU model. 
The GPUs expose a general, data-parallel programming model today in the form of 
CUDA. The recently adopted OpenCL standard will provide a common computing 

model to not only all GPUs, but also to other platforms like multi-core, many-core, 
and Cell/B.E. CUDA from NVIDIA presents a heterogeneous programming model 
where the parallel hardware can be used in conjunction with the CPU. In conjunction 

with a CPU, it can be used as Bulk Synchronous Parallel (BSP) hardware with the 
CPU deciding the barrier for synchronization. GPU programming models are 
constrained in such a way that the compiler and runtime can reason about the 

application and extract the parallelism automatically. Examples of this include 
DirectX, CUDA, and Cg. Intel architecture is more general purpose than GPU and 
other coprocessor architecture. Unlike GPUs, Intel architectures have:  

  
 1) Inter core communication through substantial, coherent cache hierarchies. 
 

2) Efficient, low latency thread synchronizations across the entire processor 
array. 

 
 3) Narrower effective SIMD width. 
At a high level, the goal is to define a constrained programming model that 

efficiently and portably targets highly parallel general purpose cores, such as Intel 
multi-core and Tera-scale systems. There are different ways to classify parallel 
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computers. One of the more widely used classifications, in use since 1966, is called 
Flynn's Taxonomy. Flynn's taxonomy distinguishes multi-processor computer 

architectures according to how they can be classified along the two independent 
dimensions of Instruction and Data. Each of these dimensions can have only one of 
two possible states: Single or Multiple. GPU based processors can efficiently perform 

floating point operations and use parallelism at massive levels due to which they can 
be a suitable  choice for processing large amounts of data. 

 
 

 

1.2 Problem Statement: 
 

 When we implement RSA algorithm on CPU, it takes a lot of time as CPU 
processes the text for encryption one by one. On the other hand GPU processes the 
text in parallel manner as it has more number of core as compared to CPU and 

hence can show massive parallel computation thus giving us an increase in 
performance boost of RSA algorithm. Implementing a public key cryptosystem is 
always a tradeoff between security and efficiency. The problem with the number 

theoretic cryptosystems (i.e. RSA) is that they require a lot of computational power 
for providing a high level of security and most likely a low level of efficiency. Public 
key algorithms are known to be slower than symmetric key alternatives because of 

their basis in modular arithmetic. Therefore, how to make a more efficient and faster 
implementation of public key algorithms is concerned. Running the public key 

algorithms by use of the parallel properties of the GPU in modular multiplication and 
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modular exponentiation may be a solution to this problem. Multiplication of big 
integers is one of the building blocks in doing modular arithmetic. The field of 

General-purpose GPU which is about solving problems other than graphics rendering 
using the GPU was until recently without a good solution. CUDA is a framework 
which makes these kinds of implementations more available to the general public of 

programmers. Using the unique properties of the GPU through CUDA has greatly 
increased the efficiency of many computational problems. The target in this project 
is to study and analyse the majority of algorithms related to the modular 

multiplication and modular exponentiation, and then to design and make an 
implementation of a public key algorithm in CUDA. Finally, this project will compare 

the performance between the GPU implementation and the CPU implementation in 
order to look into the possibility of improving the performance of public key 
algorithms. 
 

1.3 Importance: 
 
 The necessity for information security has become more and more 

widespread during these days. Fast modular exponentiation algorithms are often 
considered of practical significance in public-key cryptosystems. Parallelization of 
public key algorithms could be very useful for a high level of security system and 

save a lot of computation time. With the combination of them, the public key 
cryptosystem will be more efficient and effective for those kinds of system. 
 

 Furthermore, in this research the performance of public key algorithm will be 
compared between the GPU implementation and the CPU implementation. It could 
be used to determine the direction of parallelization of public key algorithms in the 

future. The Dense Matrix-Matrix Multiplication is common in various scientific 
domains. With the development of the GPGPU field, modern graphics processing 
units (GPUs) have been at the leading edge of increasing chip-level parallelism. 

Current NVIDIA GPUs are many core processor chips with parallelism architecture. 
This degree of hardware parallelism reflects the fact that GPU architectures evolved 

not only to fit the needs of real-time computer graphics but also parallel computing. 
On the other hand, the GPU is easy use and cheaper compared to a computer 
cluster for the purpose of parallel computations. So the research in this field will 

have a different angle for parallel computation.  
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2. OVERVIEW AND PLANNING 

2.1 Proposed system overview: 
  

 This project focuses on how to make a more efficient and faster 
implementation of public key algorithms and Dense Matrix-Matrix Multiplication. Two 

experiments implementing a public key algorithm are performed on different 
hardware platforms. One is to implement the selected algorithms normally on a CPU 
with different data sizes, and then record the execution time and other related data. 

Another is to execute designed parallel algorithms on a CUDA-enabled GPU, and 
record related data as well. Finally the performance comparison is performed 
between those experiments. The parallelization of public key algorithms is mainly 

performed in the part of modular multiplication and modular exponentiation. 
Therefore, this project implements a representative public-key algorithm RSA 
respectively on the CPU and the CUDA-enabled GPU, and compares their 

performances to find out whether the public-key algorithm could be implemented 
faster and more efficient on a GPU. The project also compares the CPU as well as 
GPU implementation of dense Matrix-Matrix Multiplication and compares the results. 

Theoretically, the performance that RSA as well as Dense Matrix-Matrix Multiplication 
implemented on a GPU should be better than that on the CPU since parallelization is 
performed on the CUDA-enabled GPU with massive parallel processors. In addition, 

there are still other related issue concerned in this project, such as time 
consumption in data transfer between host and device. The CUDA driver API and C 

runtime for CUDA are two of the programming interfaces to CUDA . The C runtime 
for CUDA handles kernel loading and kernels‘ setting before they are launched. The 
implicit code initialization, CUDA context management, CUDA module management 

(cubin and function mapping), kernel configuration, and parameter passing are all 
performed by the C runtime for CUDA. In addition, CUDA supports C++ code and 
can be compiled with any C++ compiler. However, the current version of CUDA does 

not support all features of C++. Therefore, all functions in this project are mostly 
performed in C. 
 

2.2 Challenges: 
  
 The challenges faced in this project are how to parallelize the working of RSA 

algorithm on GPU so that we can gain a performance boost in the RSA encryption of 
texts. Since CUDA doesn‘t support recursive calls to the functions, hence we cannot 
use that while programming for GPU. There is also a challenge to generate good 

prime numbers so that the encryption done must be secure and hard to crack. Also 
the challenge faced in implementing Dense Matrix-Matrix Multiplication is memory 

constraint.  
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2.3 Architecture Design: 
 

 Driven by the insatiable market demand for real time, high-definition 3D 
graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly 
parallel, multithreaded, many core processor with tremendous computational 

horsepower and very high memory bandwidth. 
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The reason behind the discrepancy in floating-point capability between the CPU and 
the GPU is that the GPU is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – and therefore designed 

such that more transistors are devoted to data processing rather than data caching 
and flow control. 
 

l 

In November 2006, NVIDIA introduced CUDA, a general purpose parallel computing 
architecture – with a new parallel programming model and instruction set 
architecture – that leverages the parallel compute engine in NVIDIA GPUs to solve 
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many complex computational problems in a more efficient way than on a CPU.  
CUDA comes with a software environment that allows developers to use C as a high-

level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
 

 
 
   Fig 2.3.4 A figure showing architecture of CUDA 
 

 
 

2.4 Modules design and description: 
 

I. Module 1 – CPU Implementation of RSA Algorithm: In this module, the 
RSA algorithm is implemented using C++ and utilizes CPU in 

encryption or decryption. The time taken by CPU in computing prime 
numbers, encrypting text, and decrypting text is calculated and stored 
for comparing with GPU implementation.  

 
II. Module 2 – GPU Implementation of RSA Algorithm: In this module, the 

RSA algorithm is implemented using C on GPU. The algorithm is 
parallelized in order to perform operations efficiently as compared to 
CPU implementation. Here also the time taken by GPU in computing 

prime numbers, encrypting text and decrypting text is calculated and 
then the comparison of time taken on CPU and GPU is done. 

 

III. Module 3 – CPU Implementation of Dense Matrix-Matrix Multiplication: 
In this module, the Dense Matrix-Matrix Multiplication is implemented 
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using C++ and utilizes CPU in performing Multiplication. The time 
taken by CPU is calculated and stored for comparing with GPU 

implementation. 
 

IV. Module 4 – GPU Implementation of Dense Matrix-Matrix Multiplication: 

In this module, the Dense Matrix-Matrix Multiplication is implemented 
using C on GPU. The algorithm is parallelized in order to perform 
operations efficiently as compared to CPU implementation. Here also 

the time taken by is calculated and then the comparison of time taken 
on CPU and GPU is done. 

 

 
 

2.5 Architecture Specification: 
 

 
 The User enters plain text as input to the system. This text is then encrypted using 
RSA algorithm and is then converted into cipher text. It is then decrypted on the 

other user‘s end with the help of his/her private key and message is then read by 
the intended user. 
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The User just runs the program and the program computes the time taken in performing 
NxN Matrix-Matrix Multiplication where ‗N‘ is the dimension of the Matrix which is supplied 
by the user of the program. 

 

2.6 Hardware Requirements: 
 

I) Intel Core 2 Duo processor E7400 @ 2.8 GHz 
II) NVIDIA Graphics Card with CUDA 

 

2.7 Software Requirements: 
  

I) NVIDIA latest graphics drivers. (Here we used NVIDIA  Geforce 

GTS 250 with driver version 296.10) 
II) CUDA toolkit v4.0.17  

III) CUDA Tools 
IV) GPU Computing SDK v4.0.19 
V) NVIDIA Parallel NSight 

VI) Microsoft Visual Studio 2008/2010 
VII) .NET Framework 3.5 or later 

 

  
 

 

 
 
 

 
 

 
 

 
 



10 | P a g e  
 

3. LITERATURE SURVEY AND REVIEW 
 

3.1 Literature Survey: 
 

Title:   
 
Toward Acceleration of RSA Using 3D Graphics Hardware. 

 
Author: 

A. Moss, D. Page and N.P. Smart  

 
Description: 
 

Efficient arithmetic operations modulo a large prime (or composite) number are core 
to the performance of public key cryptosystems. RSA is based on arithmetic in the 
ring ZN, where N = pq for large prime p and q, while Elliptic Curve Cryptography 

(ECC) can be parameterised over the finite field Fp for large prime p. With a general 
modulus m taking the value N or p respectively, on processors with a w-bit word 
size, one commonly represents 0 <=x < m using a vector of n = dm/2we radix-2w 

digits. Unless specialist coprocessor hardware is used, modular operations on such 
numbers are performed in software using well known techniques that operate using 
native integer machine operations. Given the significant computational load, it is 

desirable to accelerate said operations using instruction sets that harness Single 
Instruction Multiple Data (SIMD) parallelism; in the context of ECC, a good overview 
is given by Hankerson et al. Although dedicated vector processors have been 

proposed for cryptography these are not commodity items. In an alternative 
approach, researchers have investigated cryptosystems based on arithmetic in fields 

modulo a small prime m or extension thereof. Since ideally we have m < 2w, the 
representation of 0 <= x < m is simply one word; low-weight primes offer an 
efficient method for modular reduction. Examples that use such arithmetic include 

Optimal Extension Fields (OEF) which can provide an efficient underpinning for ECC; 
torus based constructions such as T30; and the use of Residue Number Systems 
(RNS) to implement RSA. Issues of security aside, the use of such systems is 

attractive as operations modulo m may be more efficiently realised by integer based 
machine operations. This fact is reinforced by the aforementioned potential for 
parallelism; for example, addition operations in an OEF can be computed in a 

component-wise manner which directly maps onto SIMD instruction sets. However, 
the focus on use of integer operations in implementation of operations modulo large 
and small numbers ignores the capability for efficient floating point computation 

within commodity desktop class processors. This feature is often ignored and the 
related resources are left idle: from the perspective of efficiency we would like to 
utilise the potential for floating point arithmetic to accelerate our implementations. 

Examples of this approach are provided in work by Bernstein which outline high-
performance floating point based implementations of primitives such as Poly1305 
and Curve25519. Beyond algorithmic optimisation, use of floating point hardware in 

general purpose processors such as the Intel Pentium 4 offered Bernstein some 
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significant advantages. Specifically, floating point operations can often be executed 
in parallel with integer operations; there is often a larger and more orthogonally 

accessible floating point register file available; good scheduling of floating point 
operations can often yield a throughput close to one operation per-cycle. Further 
motivation for use of this type of approach is provided by the recent availability of 

programmable, highly SIMD-parallel floating point co-processors in the form of 
Graphics Processing Units (GPU). Driven by market forces these devices have 
developed at a rate that has outpaced Moore‘s Law: for example, the Nvidia 7800-

GTX uses 300 million transistors to deliver roughly 185 Gflop/s in contrast with the 
55 million transistor Intel Pentium 4 which delivers roughly 7 Gflop/s. Although 

general purpose use of the GPU is an emerging research area, until recently the only 
published prior usage for cryptography was by Cook et al. who implemented block 
and stream ciphers using the OpenGL command-set; we are aware of no previous 

work accelerating computationally expensive public key primitives. Further, quoted 
performance results in previous work are somewhat underwhelming, with the GPU 
executing AES at only 75% the speed of a general purpose processor. This was 

recently improved, using modern GPU hardware, by Harrison and Waldron who also 
highlight the problems of overhead in communication with the card and miss 
reporting of host processor utilisation while performing GPU computation. This paper 

seeks to gather together all three strands of work described above. Our overall aim 
is arithmetic modulo a large number so we can execute operations required in the 
RSA public key cryptosystem; we implement this arithmetic with an RNS based 

approach which performs arithmetic modulo small floating point values. The end 
result is an implementation which firstly fits the GPU programming model, and 
secondly makes effective use of SIMD-parallel floating point operations on which 

GPU performance relies. We demonstrate that with some caveats, this 
implementation makes it possible to improve performance using the GPU versus that 
achieved using a general purpose processor (or CPU). An alternative approach is 

recent work implementing a similar primitive on the IBM Cell, another media-biased 
vector processor. However, the radically different special purpose architecture of the 

GPU makes the task much more difficult than on the general purpose IBM Cell, 
hence our differing approach. We organise the paper as follows. In Section 2 we 
give an overview of GPU architecture and capabilities. We use Section 3 to describe 

the algorithms used to implement modular exponentiation in RNS before describing 
the GPU implementation in Section 4. The experimental results in Section 4.3 
compare the GPU implementation with one on a standard CPU, with conclusions in 

Section 5. 
 
 

Title:   
 
GPU Cluster for High Performance Computing 

 
Author: 

Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover 
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Description: 
 

The GPU, which refers to the commodity off-the-shelf 3D graphics card, is 
specifically designed to be extremely fast at processing large graphics data sets 
(e.g., polygons and pixels) for rendering tasks. Recently, the use of the GPU to 

accelerate non-graphics computation has drawn much attention. This kind of 
research is propelled by two essential considerations: 
 

Price/Performance Ratio: The computational power of today‘s commodity GPUs 
has exceeded that of PC-based CPUs. For example, the nVIDIA GeForce 6800 Ultra, 

recently released, has been observed to reach 40 GFlops in fragment processing. In 
comparison, the theoretical peak performance of the Intel 3GHz Pentium4 using SSE 
instructions is only 6 GFlops. This high GPU performance results from the following:  

 (1) A current GPU has up to 16 pixel processors and 6 vertex processors that 
execute 4-dimensional vector float- ing point instructions in parallel;  
 (2) pipeline constraint is enforced to ensure that data elements stream 

through the processors without stalls; and  
 (3) unlike the CPU, which has long been recognized to have a memory 
bottleneck for massive computation, the GPU uses fast on-board texture memory 

which has one order of magnitude higher bandwidth (e.g., 35.2GB/sec on the 
GeForce 6800 Ultra). At the same time, the booming market for computer games 
drives high volume sales of graphics cards which keeps prices low compared to other 

specialty hardware. As a result, the GPU has become a commodity SIMD machine on 
the desktop that is ready to be exploited for computation exhibiting high compute 
parallelism and requiring high memory bandwidth. 

 
Evolution Speed: Driven by the game industry, GPU performance has 
approximately doubled every 6 months since the mid-1990s, which is much faster 

than the growth rate of CPU performance that doubles every 18 months on average 
(Moore‘s law), and this trend is expected to continue. This is made possible by the 

explicit parallelism exposed in the graphics hardware. As the semiconductor 
fabrication technology advances, GPUs can use additional transistors much more 
efficiently for computation than CPUs by increasing the number of pipelines. 

Recently, the development of GPUs has reached a new high-point with the addition 
of single-precision 32bit floating point capabilities and the high level language 
programming interface, called Cg. The developments mentioned above have 

facilitated the abstraction of the modern GPU as a stream processor. Consequently, 
mapping scientific computation onto the GPU has turned from initially hardware 
hacking techniques to more of a high level designing task. Many kinds of 

computations can be accelerated on GPUs including sparse linear system solvers, 
physical simulation, linear algebra operations, partial difference equations, fast 
Fourier transform, level-set computation, computational geometry problems, and 

also non-traditional graphics, such as volume rendering, ray-tracing, and flow 
visualization. (We refer the reader to the web site of General-Purpose Computation 
Using Graphics Hardware (GPGPU)for more information.) Whereas all of this work 

has been limited to computing small-scale problems on a single GPU, in this paper 
we address the large scale computation on a GPU cluster. Inspired by the attractive 

Flops/$ ratio and the projected development of the GPU, we believe that a GPU 
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cluster is promising for data-intensive scientific computing and can substantially 
outperform a CPU cluster at the equivalent cost. Although there have been some 

efforts to exploit the parallelism of a graphics PC cluster for interactive graphics 
tasks, to the best of our knowledge we are the first to develop a scalable GPU 
cluster for high performance scientific computing and large-scale simulation. We 

have built a cluster with 32 computation nodes connected by a 1 Gigabit Ethernet 
switch. Each node consists of a dual-CPU HP PC with an nVIDIA GeForce FX 5800 
Ultra — the GPU that cost $399 in April 2003. By adding 32 GPUs to this cluster, we 

have increased the theoretical peak performance of the cluster by 512 Gflops at a 
cost of only $12,768. As an example application, we have simulated airborne 

contaminant dispersion in the Times Square area of New York City. To model 
transport and dispersion, we use the computational fluid dynamics (CFD) model 
known as the Lattice Boltzmann Method (LBM), which is second order accurate and 

can easily accommodate complex-shaped boundaries. Beyond enhancing our 
understanding of the fluid dynamics processes governing dispersion, this work will 
support the prediction of airborne contaminant propagation so that emergency 

responders can more effectively engage their resources in response to urban 
accidents or attacks. For large scale simulations of this kind, the combined 
computational speed of the GPU cluster and the linear nature of the LBM model 

create a powerful tool that can meet the 
requirements of both speed and accuracy. In the context of modeling contaminant 
transport, Brown et al. have presented an approach for computing wind fields and 

simulating contaminant transport on three different scales: mesoscale, urban scale 
and building scale. The system they developed, called HIGRAD, computes the flow 
field by using a second-order accurate finite difference approximation of the Navier-

Stokes equations and doing large eddy simulation with a small time step to resolve 
turbulent eddies. These simulations required a few hours on a supercomputer or 
cluster to solve a 1:6 km £1:5 km area in Salt Lake City at a grid spacing of 10 

meters (grid resolution: 160£150£36). In comparison, our method is also 
secondorder accurate, incorporates a more detailed city model, and can simulate the 

Times Square area in New York City at a grid spacing of 3.8 meters (grid resolution: 
480 £ 400 £ 80) with small vortices in less than 20 minutes. This paper is organized 
as follows: Section 2 illustrates 

how the GPU can be used for non-graphics computing. Section 3 presents our GPU 
cluster, called the Stony Brook Visual Computing Cluster. In Section 4, we detail our 
LBM implementation on the GPU cluster, followed by the performance results and a 

comparison with our CPU cluster. Section 5 presents our dispersion simulation in the 
Times Square area of New York City. In Section 6, we discuss other potential usage 
of the GPU cluster for scientific computations. Finally, we conclude in Section 7. 
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Description: 
 

In the field of cryptography, public key algorithms are widely known to be slower 
than symmetric key alternatives for the reason of their basis in modular arithmetic. 
The modular arithmetic in e.g. RSA and Diffie Hellman is computationally heavy 

when compared to symmetric algorithms relying on simple operations like shifting of 
bits and XOR. Therefore, how to make a more efficient and faster implementation of 
public key algorithms is publicly concerned. With the development of the GPGPU 

(General-purpose computing on graphics processing units) field, more and more 
computing problems are solved by using the parallel property of GPU (Graphics 

Processing Unit). CUDA (Compute Unified Device Architecture) is a framework which 
makes the GPGPU more accessible and easier to learn for the general population of 
programmers. This is because it builds on C and hides many of the complicated 

details of how the GPU works from a CUDA developer. Using the unique properties 
of the GPU through CUDA has greatly increased the efficiency of many 
computational problems. Multiplication of big integers is one of the building blocks in 

doing modular arithmetic. Running the public key algorithms by use of the parallel 
properties of the GPU in modular multiplication and modular exponentiation may be 
a solution to this problem. 

  
The target in this research is to study and analyse the majority of algorithms related 
to the modular multiplication and modular exponentiation, and then to design and 

make an implementation of a public key algorithm in CUDA. Finally, this project will 
compare the performance between the GPU implementation and the CPU 
implementation in order to look into the possibility of improving the performance of 

public key algorithms. The research questions are divided into four groups, the first 
one regarding modular multiplication and modular exponentiation of big integers and 
their parallelism, the second one about integrating parallel modular multiplication 

and modular exponentiation into the public key algorithm, the third one concerning 
optimization of the algorithm, and final one regarding performance comparison of 

public key algorithm between the GPU implementation and the CPU implementation. 
 
Title:   

 
RSA Algorithm 
 

Author: 

En.wikipedia.org 
 

Description: 
 
RSA is an algorithm for public-key cryptography that is based on the presumed 

difficulty of factoring large integers, the factoring problem. RSA stands for Ron 
Rivest, Adi Shamir and Leonard Adleman, who first publicly described it in 1978. A 
user of RSA creates and then publishes the product of two large prime numbers, 

along with an auxiliary value, as their public key. The prime factors must be kept 
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secret. Anyone can use the public key to encrypt a message, but with currently 
published methods, if the public key is large enough, only someone with knowledge 

of the prime factors can feasibly decode the message. 

The RSA algorithm involves three steps: key generation, encryption and decryption. 

Key generation 

RSA involves a public key and a private key. The public key can be known to 
everyone and is used for encrypting messages. Messages encrypted with the public 
key can only be decrypted using the private key. The keys for the RSA algorithm are 

generated the following way: 

1. Choose two distinct prime numbers p and q.  

o For security purposes, the integers p and q should be chosen at 
random, and should be of similar bit-length. Prime integers can be 

efficiently found using a primality test. 
2. Compute n = pq.  

o n is used as the modulus for both the public and private keys 

3. Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient function. 
4. Choose an integer e such that 1 < e < φ(n) and greatest common 

denominator of (e,φ(n)) = 1, i.e. e and φ(n) are coprime.  

o e is released as the public key exponent. 
o e having a short bit-length and small Hamming weight results in more 

efficient encryption - most commonly 0x10001 = 65537. However, 

small values of e (such as 3) have been shown to be less secure in 
some settings. 

5. Determine d = e–1 mod φ(n); i.e. d is the multiplicative inverse of e mod 

φ(n).  
o This is more clearly stated as solve for d given (d*e)mod φ(n) = 1 
o This is often computed using the extended Euclidean algorithm. 

o d is kept as the private key exponent. 

The public key consists of the modulus n and the public (or encryption) exponent 
e. The private key consists of the modulus n and the private (or decryption) 
exponent d which must be kept secret. 

Encryption 

Alice transmits her public key (n,e) to Bob and keeps the private key secret. Bob 
then wishes to send message M to Alice. 

He first turns M into an integer m, such that 0 < m < n by using an agreed-upon 
reversible protocol known as a padding scheme. He then computes the cipher text c 
corresponding to 

c = me (mod n). 
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This can be done quickly using the method of exponentiation by squaring. Bob then 
transmits c to Alice. 

Note that at least nine values of m will yield a cipher text c equal to m, But this is 
very unlikely to occur in practice. 

Decryption 

Alice can recover m from c by using her private key exponent d via computing 

m = cd (mod n). 

Given m, she can recover the original message M by reversing the padding scheme. 

 

3.2 Literature Summary: 
 
 From the above literature survey, we come to conclusion that we are having 
massively parallel processors (Graphics Cards) at our disposal thus giving us great 

computing power. We could harness this power and utilize it in implementing many 
tasks in parallel. One of the applications of this could be implementation of RSA 
algorithm on the GPU. RSA algorithm performs a lot of modular multiplications that 

are slow on CPU as compared to that on GPU as GPUs have a lot of processors and 
hence this process could be parallelized on GPUs and we could get a get 
performance boost in encryption and decryption of text using RSA algorithm. We can 

also conclude that if we perform the tasks on GPU clusters, flops per dollar ratio is 
low and hence GPU is far cheaper in case of computation than CPU.  
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4. SYSTEM DESIGN 
 

4.1 High-Level Design: 
 

4.1.1 For RSA Algorithm 
 

 USE CASE 

 
 

 
 Here in the use case diagram, there are five characters and they are users, RSA program, 
CPU and GPU. Here the user can do encryption/decryption only by using the UI provided. 
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 FLOW CHART 
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4.1.2 For Dense Matrix-Matrix Multiplication 
 

 
 

 USE CASE 

 
 

 
 
 

 
 

 
 
Here in the use case diagram, there are five characters and they are users, Matrix 

Multiplication Program, CPU and GPU. Here the user can do Multiplication only by using the 
UI provided. 
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 FLOW CHART 
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4.2 Low-Level Design: 
 
4.2.1 For RSA Algorithm 

 

 Start the program. 
 Import the necessary packages. 

 Generate two prime numbers and test for their primality. 
 Calculate p, q, e, and d in the program. 

 Perform Encryption and show the encrypted cipher text. 

 After that in order to demonstrate the decryption using RSA, apply 
decryption algorithm and decrypt the cipher text and show the result 
to the user. 

 End the program. 
 

4.2.2 For Dense Matrix-Matrix Multiplication Algorithm 
 

 Start the program. 

 Import the necessary packages. 

 Get input for the Dimension of the Matrix. 
 Perform Matrix Multiplication 

 End the program. 
 

4.3 Test Cases Generation 
 
4.3.1 For RSA Algorithm 
 

 
  Table 4.3.1.1 Test Cases for RSA Encryption and Decryption 

 

     

Msg Size 

CPU(Encryption) 

(Time taken in 
ms) 

GPU(Encryption) 

(Time taken in 
ms) 

CPU(Decryption) 

(Time taken in 
ms) 

GPU(Decryption) 

(Time taken in 
ms) 

100 16 30.56 65 408.5 

200 31 33.09 126 427.67 

300 47 34.45 189 440.82 

400 63 34.45 254 440.83 

500 79 34.46 314 442.23 

600 93 34.46 382 452.07 

700 109 34.46 438 452.1 

800 127 34.41 504 462.68 

900 142 34.44 565 462.89 

1000 160 34.46 681 463.18 

1100 171 34.46 706 475.1 

1200 188 34.45 758 475.31 

1300 209 34.48 819 488.3 
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1400 221 34.46 889 489.94 

1500 237 34.47 944 490.9 

1600 249 34.46 1006 508.36 

1700 291 34.46 1071 508.962 

1800 284 34.44 1129 527.77 

1900 299 34.47 1197 532.64 

2000 314 34.44 1257 532.96 

2100 326 34.45 1320 533.23 

2200 348 34.45 1379 532.88 

2300 361 34.44 1467 532.86 

2400 374 34.45 1507 533.08 

2500 393 34.46 1568 533.36 

2600 413 34.46 1637 532.9 

2700 420 34.48 1695 532.85 

2800 435 34.48 1758 532.92 

2900 452 34.52 1823 532.97 

3000 478 34.45 1917 532.9 

3100 487 34.45 1948 533.13 

3200 498 33.42 2020 530.71 

3300 513 33.42 2070 531.1 

3400 530 33.39 2136 530.78 

3500 547 33.4 2202 530.74 

3600 564 33.38 2259 531.06 

3700 581 33.42 2387 530.74 

3800 594 33.4 2406 531.02 

3900 608 33.36 2448 531.09 

4000 624 35.2 2517 534.75 

4500 701 68.72 2827 671.2 

5000 780 69.18 3140 671.64 

5500 859 70.19 3454 671.12 

6000 938 68.75 3772 670.27 

6500 1016 68.77 4085 672.17 

7000 1096 68.77 4399 671.32 

8000 1252 69.26 5034 670.32 

9000 1411 103.47 5658 808.79 

10000 1570 103.44 6289 808.01 

11000 1738 104.42 6929 807.74 

12000 1892 103.03 7555 808.01 

13000 2052 137.28 8188 945.57 

14000 2217 137.28 8823 944.59 

15000 2373 137.36 9484 944.57 

16000 2534 137.36 10086 947.2 

17000 2705 172.99 10731 1081.64 

18000 2864 172.09 11354 1083.07 

19000 3030 171.65 11991 1081.54 



23 | P a g e  
 

20000 3195 173.04 12638 1083.01 

21000 3352 205.85 13264 1218.1 

22000 3521 205.88 13900 1219.18 

23000 3683 208.52 14533 1220.01 

24000 3849 205.94 15179 1220.93 

25000 4020 240.07 15819 1356.27 

26000 4179 240.51 16455 1357.09 

27000 4352 240.21 17089 1356.57 

28000 4514 240.23 17723 1357.14 

29000 4688 274.37 18363 1493.41 

30000 4857 274.84 19002 1493.89 

31000 5023 275.03 19659 1495.64 

32000 5194 274.51 20287 1493.88 

33000 5366 308.7 20933 1925.55 

34000 5557 309.151 21631 1965.71 

34500 5622 308.68 21904 1999 

 

 
4.3.2 For Dense Matrix-Matrix Multiplication Algorithm 
 

 
Table 4.3.2.1 Test Cases for Dense Matrix-Matrix Multiplication 

 

     

Matrix 
dimension 

 

CPU 

(Time taken in 
ms) 

 

GPU 

(Time taken in 
ms) 

50 
 

4 
 

0.292 

100 

 

50 

 

1.109 

150 
 

109 
 

3.742 

200 

 

271 

 

6.917 

250 
 

512 
 

17.132 

300 
 

893 
 

26.009 

350 
 

1410 
 

42.822 

400 
 

2106 
 

38.749 

450 

 

3152 

 

96.954 

500 
 

4265 
 

138.614 

550 

 

6499 

 

179.884 

600 
 

8555 
 

189.32 

650 
 

11369 
 

288.29 

700 

 

14424 

 

332.938 

750 
 

17665 
 

455.066 

800 

 

21347 

 

316.723 

850 
 

26511 
 

662.75 

900 
 

31266 
 

754.819 

950 
 

37201 
 

908.077 
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1000 

 

43749 

 

906.041 

1050 
 

51895 
 

1264.69 

 
 
 
 
Table 4.3.2.2 Test Cases for Dense Matrix-Matrix Multiplication (GPU only) 
 

Matrix 

Dimension 

GPU (Time 
Taken in 

ms) 

50 0.292 

100 1.109 

150 3.742 

200 6.917 

250 17.132 

300 26.009 

350 42.822 

400 38.749 

450 96.954 

500 138.614 

550 179.884 

600 189.32 

650 288.29 

700 332.938 

750 455.066 

800 316.723 

850 662.75 

900 754.819 

950 908.077 

1000 906.041 

1050 1264.69 

1100 1308.25 

1200 1025.76 

1300 2593.94 

1400 2562.16 

1500 2701.15 

2000 2698.79 

2500 2815.94 

3000 2595.73 

3500 2917.93 

4000 2655.18 

4500 2602.11 

5000 2766.64 

5500 2659.58 
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5. System Implementation 

 
5.1 Description on the software used:  
 

The various softwares and SDKs used in implementing the project are as follows 

   
a) Nvidia CUDA toolkit v4.0.17 (32 Bit) 
b) Nvidia GPU computing SDK v4.0.17  (32 Bit) 

c) Nvidia Parallel NSight (32 Bit) 
d) Microsoft Visual Studio 2010 Ultimate 

 

The description of above mentioned softwares and SDKs are as follows 
 
a) Nvidia CUDA toolkit v4.0.17: The NVIDIA CUDA Toolkit provides a 

comprehensive development environment for C and C++ developers 
building GPU accelerated applications.  The CUDA Toolkit includes a 
compiler for NVIDIA GPUs, math libraries, and tools for debugging and 

optimizing the performance of the applications.  We also find 
programming guides, user manuals, API reference, and other 
documentation. It comprises of CUDA C/C++ compiler, GPU Debugging 

and Profiling tools, GPU-accelerated math libraries, ad GPU accelerated 
performance primitives.  

 

Key Features 

  

 CUDA Libraries  

o cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust 
 Development Tools  

o NVIDIA CUDA C/C++ Compiler (NVCC) 

o Visual Profiler, CUDA-GDB Debugger, CUDA-MEMCHECK 
 Support for Windows, Linux and MacOS 

b) Nvidia GPU computing SDK v4.0.17: The NVIDIA GPU computing SDK 
provides various math libraries such as CUBLAS for performing various 
algebraic operations. Matrix-Matrix Multiplication, Matrix-vector 

multiplication, and Vector-vector multiplications are provided in this library 
by Nvidia. 

 

 
c) Nvidia Parallel NSight: NVIDIA Parallel Nsight brings GPU Computing 

into Microsoft Visual Studio. We can build, Debug, Profile and Trace 
heterogeneous compute and graphics applications using CUDA C/C++, 
OpenCL, DirectCompute, Direct3D, and OpenGL. 
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d) Microsoft Visual Studio 2010: Microsoft Visual Studio is a powerful IDE 
that ensures quality code throughout the entire application lifecycle, from 

design to deployment. This IDE is used in doing coding for the project. 
 

   

5.2 Description on Methods/functions used: 
 
 

 There are various programs written in this project and a comparison of 
performance of them over CPU and GPU is done. Hence each algorithm contains an 
implementation that uses only CPU as well as implementation that uses only GPU. All 

the functions used in every implementation is described below: 
  

a) CPU implementation of RSA Algorithm 
o The display() function: This function is used by the program to 

display the computed values of n, p, q, phi, e and d used by the RSA 

Algorithm. 
o The generatePandQ() function: This function is used by the 

program to compute two randomly generated prime numbers p and q 

that are used in various computations in RSA algorithm. 
o The generateEandD() function: This function is written to calculate 

the values of public key e and private key d that is used in performing 

encryption and decryption of the text. 
o The extEuclidean() function: This function is used to find the 

greatest common divisor of two numbers. Used in calculating e from 

phi and d from e and phi. 
o The gcd() function: This function is used by extEuclidean() function 

in calculating greatest common divisor. 

o The isPrime() function: This function is used to test the primality of 
the randomly generated number. 

o The encryption() function: This function is used to perform the 
encryption of the text. 

o The decryption() function: This function is used to perform the 

decryption of the text. 
o The double diffclock() function: This function is used to calculate 

the difference between two times. 
o The chargen() function: This function is used to generate random 

characters in message to be used in RSA encryption.  
o The main() function: This function is used to perform the execution 

of program and call all the user defined functions. 
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b) GPU implementation of RSA Algorithm 
o The display() function: This function is used by the program to 

display the computed values of n, p, q, phi, e and d used by the RSA 
Algorithm. 

o The generatePandQ() function: This function is used by the 

program to compute two randomly generated prime numbers p and q 
that are used in various computations in RSA algorithm. 

o The generateEandD() function: This function is written to calculate 

the values of public key e and private key d that is used in performing 
encryption and decryption of the text. 

o The extEuclidean() function: This function is used to find the 
greatest common divisor of two numbers. Used in calculating e from 
phi and d from e and phi. 

o The gcd() function: This function is used by extEuclidean() function 
in calculating greatest common divisor. 

o The isPrime() function: This function is used to test the primality of 

the randomly generated number. 
o The modular_mult() function: This function is used to perform the 

encryption/decryption of the text using GPU. 
o The chargen() function: This function is used to generate random 

characters in message to be used in RSA encryption.  
o The main() function: This function is used to perform the execution 

of program and call all the user defined functions. 
 

 

 
c) CPU implementation of matrix multiplication: 

o The main() function: This function first generates two matrices of 

given dimensions, stores it in an array, and then reads it and finally 
perform the matrix multiplication over CPU. 

 
o The double diffclock() function: This function is used to calculate 

the difference between two times. 

 
d) GPU implementation of matrix multiplication: 

o The MatMul()  function: This function is used to transfer the 

matrices from CPU to the memory of GPU, and then after the 
completion of computation again transfer result from GPU to CPU and 
free the memories allocated in GPU. 

o The MatMulKernel() function : This function is used to perform 
matrix multiplication of two matrices on GPU in a parallel manner. It 
creates a thread for each element for multiplication on GPU thereby 

gaining massive parallelism in matrix multiplication. 
o The main() function: This function first generates two matrices of 

given dimensions, stores it in an array, and then reads it and finally 

perform the matrix multiplication over GPU. 
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5.3 Module wise implementation description: 
 

a) Module 1: This module is the CPU implementation of RSA Algorithm. 
In this module, the RSA algorithm is implemented using C++ that 
utilizes CPU for encryption and decryption of text. It involves 

generation of pseudo prime numbers for calculating phi for the RSA 
Algorithm. Using the value of p, q, and phi, the public key ‗e‘ and the 

private key ‗d‘ is calculated for encryption and decryption of the text 
respectively. 

 

b) Module 2: This module is the GPU implementation of RSA Algorithm. 
In this module, the RSA algorithm is implemented using C++ that 
utilizes GPU for encryption and decryption of text. It involves 

generation of pseudo prime numbers for calculating phi for the RSA 
Algorithm. Using the value of p, q, and phi, the public key ‗e‘ and the 
private key ‗d‘ is calculated for encryption and decryption of the text 

respectively. The encryption and decryption of text requires modular 
multiplication. In this module, the modular multiplication is performed 
over Graphics Processing Unit (GPU). 

 

c) Module 3: In this module, the implementation of multiplication of 
matrices of given dimension is done that utilizes CPU for performing 

computations. Here two matrices that contain randomly generated 
floating point numbers are generated and are used by CPU in order to 

calculate the Matrix Multiplication of both the matrices. 
 

d) Module 4: The module 4 comprises of implementation of matrices of 

given dimension that utilizes GPU for performing the matrix 
computations in a parallel manner. Each thread on GPU is used to 
compute the value of single element. Here two matrices that contain 

randomly generated floating point numbers are generated. The 
matrices are then transferred to the GPU memory for computation, the 
calculations are carried out, and the results are then sent again to CPU. 

Here it gets stored in a matrix. 
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5.4 Code 
 

5.4.1 Code for CPU implementation of RSA Algorithm: 
 

/* 
This algorithm can encrypt a message < n where n is product of two prime 
numbers.... 

*/ 
#include<…..>    //Contains all the include files used 
#define CHAR_GEN 4500 

using namespace std; 
long long int n,p,q,m,phi,e,d; 
char message[100000]; 

     
void generatePandQ(); 

int isPrime(long long int&); 
void display(); 
void generateEandD(); 

double diffclock(clock_t clock1,clock_t clock2) 
{ 
 double diffticks=clock1-clock2; 

 double diffms=(diffticks*1000)/CLOCKS_PER_SEC; 
 return diffms; 
} 

long long int gcd(long long int , long long int ); 
void extEuclidean(long long int , long long int , long long int &, long long int 
&); 

long long int encryption(long long int ); 
long long int decryption(long long int ); 
 

void display() 
{ 
     cout << "n =\t" << n << endl; 

     cout << "p =\t" << p <<endl; 
     cout << "q =\t" << q << endl; 

     cout << "phi =\t" << phi << endl; 
     cout << "e =\t" << e << endl; 
     cout << "d =\t" << d << endl; 

} 
 
void generatePandQ() 

{ 
     //algorithm for generating p and q used in the RSA Algorithm 
} 
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void generateEandD() 
{ 

//algorithm for generating public and private keys e and d used in the RSA 
Algorithm 

} 

 
void extEuclidean(long long int a,long long int b, long long int &lastx, long 
long int &lasty) 

{ 
     //algorithm for finding gcd 

} 
 
long long int gcd( long long int a, long long int b) 

{ 
     //algorithm for finding gcd 
} 

 
int isPrime( long long int &x) 
{ 

     long long int lim,i; 
     if(x % 2 == 0) 
          return 0; 

     lim = (long long int)sqrt((double)x); 
     for(i = 3; i <= lim ; i += 2) 
          if( x % i == 0) 

              return 0; 
     return 1; 
} 

 
long long int encryption( long long int msg) 

{ 
      //encryption algorithm  
} 

 
long long int decryption(long long int e_msg) 
{ 

     //decryption algorithm  
} 
void chargen() 

{ 
 int i; 
 int ch=65; 

 for(i=0;i<CHAR_GEN;i++) 
 { 
  message[i]=(char)ch; 

  ch++; 
  if(ch==123) 

  { 
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   ch=65; 
  } 

 } 
 message[i]='\0'; 
} 

 
int main() 
{ 

    int i; 
    long long int e_msg=0,d_msg=0,*emsg,*dmsg; 

    generatePandQ(); 
    generateEandD(); 
    display(); 

 chargen(); 
    emsg = new long long int[strlen(message)]; 
    dmsg = new long long int[strlen(message)]; 

 cout<<"Message size used : "<<CHAR_GEN<<endl; 
 clock_t begin=clock(); 
    for(i=0;i<strlen(message);i++) 

    { 
                                 e_msg = encryption((long long int)message[i]); 
                                 emsg[i]=e_msg; 

    } 
 clock_t end=clock(); 
 cout << "Encryption Time : " << double(diffclock(end,begin)) << " 

ms"<< endl; 
 begin=clock(); 
    for(i=0;i<strlen(message);i++) 

    { 
                                 d_msg = decryption((long long int)emsg[i]); 

                                 dmsg[i]=d_msg; 
    } 
 end=clock(); 

 cout << "Decryption Time : " << double(diffclock(end,begin)) << " 
ms"<< endl; 
 getch(); 

    return 0; 
} 

   

5.4.2 Code for GPU implementation of RSA Algorithm: 
 
#include<…..>    //Contains all the include files used 

#define CHAR_GEN 34500 
using namespace std; 

char message[100000]; 
long long int n,p,q,phi,e,d; 
long long int *emsg,*dmsg,*emsg_d,*dmsg_d; 

long long int size; 
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void generatePandQ(); 
int isPrime(long long int&); 

void display(); 
void generateEandD(); 
long long int gcd(long long int , long long int ); 

void extEuclidean(long long int , long long int , long long int &, long long int &); 
long long int encryption(long long int ); 
long long int decryption(long long int ); 

__global__ void modular_mult(long long int size,long long int* emsg_d,int n_d,int 
e_d) 

{ 
 //algorithm for performing modular multiplication 
} 

 
void display() 
{ 

     cout << "n =\t" << n << endl; 
     cout << "p =\t" << p <<endl; 
     cout << "q =\t" << q << endl; 

     cout << "phi =\t" << phi << endl; 
     cout << "e =\t" << e << endl; 
     cout << "d =\t" << d << endl; 

} 
 
 

 
void generatePandQ() 
{ 

     //algorithm for generating two random prime numbers 
} 

 
void generateEandD() 
{ 

     //algorithm for generating public key and private key for RSA encryption 
} 
 

void extEuclidean(long long int a,long long int b, long long int &lastx, long long int 
&lasty) 
{ 

//algorithm for finding GCD 
} 
 

long long int gcd( long long int a, long long int b) 
{ 
     long long int temp = 0; 

     while(b != 0) 
     { 

             temp = a; 



33 | P a g e  
 

             a = b; 
             b = temp % b; 

     } 
     return a; 
} 

int isPrime( long long int &x) 
{ 
     long long int lim,i; 

     if(x % 2 == 0) 
          return 0; 

     lim = (long long int)sqrt((double)x); 
     for(i = 3; i <= lim ; i += 2) 
          if( x % i == 0) 

              return 0; 
     return 1; 
} 

void chargen() 
{ 
 long long int i; 

 int ch=65; 
 for(i=0;i<CHAR_GEN;i++) 
 { 

  message[i]=(char)ch; 
  ch++; 
  if(ch==123) 

  { 
   ch=65; 
  } 

 } 
 message[i]='\0'; 

} 
int main() 
{ 

 long long int m=1; 
    long long int i,N=50000; 
     

    generatePandQ(); 
    generateEandD(); 
    display(); 

 chargen(); 
    cout<<"Message Size : "<<CHAR_GEN<<endl; 
 size=strlen(message); 

    emsg = new long long int[size]; 
    dmsg = new long long int[size]; 
 //Algorithm for kernel invocation 

 unsigned int timer_rsa=0; 
 unsigned int timer_rsa_dec=0; 

 cutilCheckError(cutCreateTimer(&timer_rsa)); 
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 cutilCheckError(cutStartTimer(timer_rsa)); 
    modular_mult<<<blocksPerGrid, threadsPerBlock>>>(size,emsg_d,(int)n,(int)e); 

 cudaDeviceSynchronize(); 
 cutilSafeCall( cudaMemcpy(emsg, emsg_d, size, cudaMemcpyDeviceToHost) 
); 

 cutilCheckError(cutStopTimer(timer_rsa)); 
 double dSeconds = cutGetTimerValue(timer_rsa)/((double)1 * 1000.0); 
 cout<<"Encryption Time = "<<dSeconds*1000<<"ms"<<endl; 

 for(i=0;i<size;i++) 
    { 

  dmsg[i]=emsg[i]; 
 } 
 cutilCheckError(cutCreateTimer(&timer_rsa_dec)); 

 cutilCheckError(cutStartTimer(timer_rsa_dec)); 
 cutilSafeCall( cudaMemcpy(dmsg_d, dmsg, size, cudaMemcpyHostToDevice) 
); 

 modular_mult<<<blocksPerGrid, 
threadsPerBlock>>>(size,dmsg_d,(int)n,(int)d); 
 cudaDeviceSynchronize(); 

 cutilSafeCall( cudaMemcpy(dmsg, dmsg_d, size, cudaMemcpyDeviceToHost) 
); 
 cutilCheckError(cutStopTimer(timer_rsa_dec)); 

 dSeconds = cutGetTimerValue(timer_rsa_dec)/((double)1 * 1000.0); 
 cout<<"Decryption Time = "<<dSeconds*1000<<"ms"<<endl; 
 getch(); 

    return 0; 
} 
   
 

5.4.3 Code for CPU implementation of Dense Matrix-Matrix 

Multiplication: 
 
 

#include<…..>    //Contains all the include files used 
using namespace std; 
int max_mul=1050; 

double diffclock(clock_t clock1,clock_t clock2) 
{ 
 double diffticks=clock1-clock2; 

 double diffms=(diffticks*1000)/CLOCKS_PER_SEC; 
 return diffms; 

} 
int main() 
{ 

 float *a,*b,*c; 
    long long int i,j,k; 
 a=(float*)malloc(max_mul*max_mul*sizeof(float)); 

    b=(float*)malloc(max_mul*max_mul*sizeof(float)); 
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 c=(float*)malloc(max_mul*max_mul*sizeof(float)); 
    for(i=0;i<max_mul;i++) 

    { 
                     for(j=0;j<max_mul;j++) 
                     { 

                                      a[i * max_mul + j]=(rand() / (float)RAND_MAX); 
                                      b[i * max_mul + j]=(rand() / (float)RAND_MAX); 
                     } 

    } 
 clock_t begin=clock(); 

 for(i=0;i<max_mul;i++) 
 { 
  for(j=0;j<max_mul;j++) 

  { 
   c[i * max_mul + j]=0; 
   for(k=0;k<max_mul;k++) 

   { 
    c[i * max_mul + j]=c[i * max_mul + j]+a[i * 
max_mul + k]*b[k * max_mul + j]; 

   } 
  } 
 } 

 clock_t end=clock(); 
 cout << "Multiplication Time : " << double(diffclock(end,begin)) << " 
ms"<< endl; 

 getch(); 
    return 0; 

} 

 

5.4.4 Code for GPU implementation of Dense Matrix-Matrix 

Multiplication: 
 

#include<…..>    //Contains all the include files used 

#define MIN 0 
#define MAX 3000 
#define BLOCK_SIZE 16 

using namespace std; 
typedef struct  

{  
 int width;  
 int height;  

 float* elements;  
} Matrix; 
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__global__ void MatMulKernel(const Matrix A, const Matrix B, Matrix C)  
{  

 
 //algorithm for performing matrix multiplication on parallel architecture 
} 

 
void MatMul(const Matrix A, const Matrix B, Matrix C)  
{  

 //contains the code for copying data from host to device 
 //Then the matrixmulkernel is invoked and result thus obtained  

 //are copied to host from device  
} 

 

int main() 
{ 
 Matrix l_a,l_b,l_c; 

 l_a.width=l_a.height=l_b.width=l_b.height=l_c.width=l_c.height=MAX
; 
    int i,j; 

    l_a.elements=(float*)malloc(l_a.width*l_a.height*sizeof(float)); 
    l_b.elements=(float*)malloc(l_b.width*l_b.height*sizeof(float)); 
    l_c.elements=(float*)malloc(l_c.width*l_c.height*sizeof(float)); 

    for(i=MIN;i<MAX;i++) 
    { 
                     for(j=MIN;j<MAX;j++) 

                     { 
                                      l_a.elements[i*MAX+j]=(rand() / 

(float)RAND_MAX); 
                                      l_b.elements[i*MAX+j]=(rand() / 
(float)RAND_MAX); 

                     } 
    } 
    MatMul(l_a,l_b,l_c); 

    return 0; 
} 
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6. Results and Discussion: 

6.1 Output / Results: 
  

a) Output for CPU Implementation of RSA Algorithm 
 

 
Fig 6.1.1 shows the output of the RSA Algorithm program that is implemented on 
CPU. The CPU implementation of RSA Algorithm implemented using C++ utilizes 

CPU for encryption and decryption of text. It involves generation of pseudo prime 
numbers for calculating phi for the RSA Algorithm. Using the value of p, q, and phi, 
the public key ‗e‘ and the private key ‗d‘ is calculated for encryption and decryption 

of the text respectively.  
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b) Output for GPU Implementation of RSA Algorithm 
 

 

 
 

Fig 6.1.2 shows the output of the RSA Algorithm program that is implemented on 

GPU. The GPU implementation of RSA Algorithm is implemented using C++ that 
utilizes GPU for encryption and decryption of text. It involves generation of pseudo 
prime numbers for calculating phi for the RSA Algorithm. Using the value of p, q, 

and phi, the public key ‗e‘ and the private key ‗d‘ is calculated for encryption and 
decryption of the text respectively. The encryption and decryption of text requires 
modular multiplication. In this module, the modular multiplication is performed over 

Graphics Processing Unit (GPU). 
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c) Output for CPU Implementation of n-Dimension Dense Matrix-Matrix 
multiplication:  

 

 
Fig 6.1.3 shows the output of the Dense Matrix-Matrix Multiplication program that is 
implemented on CPU. The Matrices are randomly generated and the time taken in 
performing the computation is displayed. 
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d) Output for GPU Implementation of 320 X 320 Matrix multiplication:  
 

 

 
 

 

Fig 6.1.4 shows the output of the Dense Matrix-Matrix Multiplication program that is 
implemented on GPU. The Matrices are randomly generated and the time taken in 

performing the computation is displayed. 
 
 

6.2 Result Analysis: 
  
 The results that are generated after implementing the above mentioned four 

modules needs to be compared on the basis of time taken by each implementation 
i.e. the time taken by the CPU implementation vs. the time take by GPU 

implementation of the same algorithm. The time taken to perform 
Encryption/Decryption of RSA algorithm, and also time taken for performing matrix 
multiplication on both CPU as well as GPU is calculated. The results thus obtained is 

compared to show the findings whether the CPU implementation take less time or 
GPU implementation of the same algorithm takes less time.  
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Figure 6.2.1 shows the time taken by CPU in performing encryption using RSA 
Algorithm with respect to that of time taken by GPU in doing the same. The number 
of characters in a message taken for performing the encryption is shown on x-axis 
and time taken in performing the encryption corresponding to the given message 
length is shown on y-axis. It can be inferred from the graph that initially the 
performance of CPU is better as compared to that of GPU when there are less 
number of characters in message. As the number of characters in message increases, 
the GPU takes less time in comparison to that with CPU in performing the Encryption 
using RSA Algorithm. 
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Figure 6.2.2 shows the time taken by CPU in performing decryption using RSA 
Algorithm with respect to that of time taken by GPU in doing the same. The number 
of characters in a message taken for performing the decryption is shown on x-axis 
and time taken in performing the decryption corresponding to the given message 
length is shown on y-axis. It can be inferred from the graph that initially the 
performance of CPU is better as compared to that of GPU when there are less 
number of characters in message. As the number of characters in message increases, 
the GPU takes less time in comparison to that with CPU in performing the Encryption 
using RSA Algorithm. 
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Figure 6.2.3 shows the time taken by CPU in performing dense Matrix-Matrix 
multiplication with respect to that of time taken by GPU in doing the same. The 
dimension of matrix taken for performing the multiplication is shown on x-axis and 
time taken in performing the multiplication corresponding to the given matrix 
dimension is shown on y-axis. It can be inferred from the graph that initially the 
performance of CPU is better as compared to that of GPU when there are less 
number of elements in matrix i.e. the dimension of the matrix is small. As the matrix 
dimension increases, the GPU takes less time in comparison to that with CPU in 
performing the multiplication. 
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Figure 6.2.4 shows the time taken by GPU in performing dense Matrix-Matrix 
multiplication. The dimension of matrix taken for performing the multiplication is 
shown on x-axis and time taken in performing the multiplication corresponding to the 
given matrix dimension is shown on y-axis. Here the time taken by CPU is not taken 
into consideration as beyond the matrix dimension of 1000, the CPU starts taking 
time in terms of minutes which is too large as compared to time taken by GPU in 
performing multiplication for same matrix dimension. 

 
6.3 Discussion: 
 
 Driven by the insatiable market demand for real time, high-definition 3D 
graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly 

parallel, multithreaded, many core processor with tremendous computational 
horsepower and very high memory bandwidth. It is proposed that the GPU 
implementation will take less time as compared to CPU implementation as GPUs 

available nowadays are capable of performing massively parallel floating point 
operations in a less time and are able to achieve speed of computation in terms of 

few hundred Gflops where as CPUs can perform operations in terms of Mflops.  
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7. Conclusion and Future Work 

7.1 Conclusion: 
 
RSA Algorithm and Dense Matrix-Matrix Multiplication on GPU using CUDA is 
implemented on NVIDIA Graphics Processing Unit integrated with Central Processing 

Unit. It is observed that the multithreading architecture and SIMD approach of CUDA 
helps for performance improvement in a great sense. There is tremendous 
difference in the results obtained on CPU and on GPU. So, CUDA programming is 

one of the best approaches to optimize the time for various algorithms which require 
huge amount of data, and is further suitable for operations which require floating 
point arithmetic. Therefore, GPUs can be used to run various algorithms efficiently, 

with their capabilities to handle floating point arithmetic and big data as well. 
 

7.2 Scope of Future Work: 

 
The RSA algorithm implemented in this project can further be improved by making it 

to work for even millions of characters. Also we can use large size of prime numbers 
in order to achieve higher level of security in RSA Encryption and Decryption. The 
Dense Matrix-Matrix multiplication implemented on GPU in this project just utilizes 

basic CUDA functions. They are not highly optimized. We can use CUBLAS libraries in 
implementing the dense Matrix-Matrix multiplication that would give a high gain in 
performance over the current implementation. 
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