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What is Machine Comprehension®?

« Context: One of the most famous
people born in Warsaw was Maria
Sktodowska-Curie, who achieved
international recognition for her
research on radioactivity and was the
first female recipient of the Nobel Prize.

e Question: What was Maria Curie the first
female recipient of?

« Answer: Nobel Prize



Research Questions

« How robust are MC models to different types and amounts
of perturbations?

« What factors of the data contribute to model errors?

Data
 SQUAD [Rajpurkar+ 2016]
e TriviaQA [Joshi+ 2017]

Models

« BIiDAF w/ ELMO [Seo+ 2017, Peters+ 2018]
« BERT [Devlin+ 2019]



Perturbations

Original

The connection between macroscopic nonconservative
forces and microscopic conservative forces is described by
detailed treatment with statistical mechanics.

Character Replacement

. ldentical looking but with different
Unicode codepoints

. Homograph attack

The connection between macroscopic nonconservative
forces and microscopic conservative forces is described by
detailed treatment with statistical mechanics.

Word Replacement
. Replace with nearest neighbor

The connection between macroscopic nonconservative
forces and insect conservative troops is referred by
detailed treatment with statistical mechanics.

Sentence Paraphrase
. Paraphrase with Improved ParaBank
Rewriter [Hu+ 2019]

The link between macroscopic non-conservative forces and
microscopic conservative forces is described in detall by
statistical mechanics.




Clean training data

Adversarial training <
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Effects of Character Perturbations

SQu (baseline=3732) SQu (baseline=1732) Trivia (baseline=6089)
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« Character perturbations are the most harmful
« But are the most easily made robust against



Effects of Word Perturbations
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« Word perturbations introduce modest amount of errors
« Adversarial training does not seem to help



Effects of Sentence Perturbations
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* Introduces the |least errors
* Improve with strategic paraphrasing



Strategic Paraphrasing

« |[dentify important words by removing a word and checking
the model’s prediction and confidence

« Rewrite the most important words using constrained
decoding

Original Paragraph Strategic Paraphrase

... Veteran receiver Demaryius Thomas led the team ... The veteran earman Demaryius Thomas was leading
with 105 receptions for 1,304 yards and six touchdowns, a team of 1,304 yards and six touchdowns, while Em-
while Emmanuel Sanders caught 76 passes for 1,135  manuel Sanders caught 76 passes for 1,135 yards and six
yards and six scores, while adding another 106 yards  scores while he added another 106 yards of punts back.
returning punts.

Question: Who led the Broncos with 105 receptions?
Answer: Demaryius Thomas (correct) — Emmanuel Sanders (incorrect)




General Observations

SQuUAD ELMo (baseline=3732) SQuUAD BERT (baseline=1732) TriviaQA BERT (baseline=6089)
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When training with perturbed data, the amount of perturbed data does
not matter too much

BERT model made less errors than ELMo
TriviaQA may be a harder dataset than SQUAD
Ensembling helped for TriviaQA
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Explaining Model Performance Through Data

« What factors of the data contribute to model errors?

 Model answer length
« Question type

« Question complexity
« Context complexity

e CrossCheck [Arendt+ 2020]

 Predicting model errors

©
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Factors Associated With Errors

* Model answer length

« Longer answers returned by the model are more likely to be
incorrect

Model Answer Length

4000 [ SQUAD

TriviaQA
3000

2000

1000

« Question Type °

« SOome guestions are easier to answer
« “When” and “How many”
 Even when incorrect, answers tend to be the right type

1 2 3 4 5 6 7 8 9 10
# words
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Factors Associated With Errors

 Question Difficulty: inter- S [— G ®

annotator agreement (SQUAD) U I
 Low-confidence when trained on <N

clean data T ——

- More confident when adversarially

trained (a) None perturbed (b) Half perturbed

- Context Difficulty: Flesch-  JB A -

Kincaid readability ‘

T T T
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1 I ||
0.0 05 1.0
Model Confidence

(d) Both
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Predicting Model Errors

 Binary classification using XGBoost

Para Word Char
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« How robust are MC models to different types and amounts
of perturbations?
« BERT is more robust then BIDAF+ELMo
« Adversarial training helps
« Strategic paraphrasing: adversarially rewrite important words

« What factors of the data contribute to model errors?

 Training amount, perturbation type, question type, question length,
context length, answer length, context and question complexity

« Created a model to predict errors

 'm looking for a postdoc position! Check out my other work:

cs.jhu.edu/~winston
15



