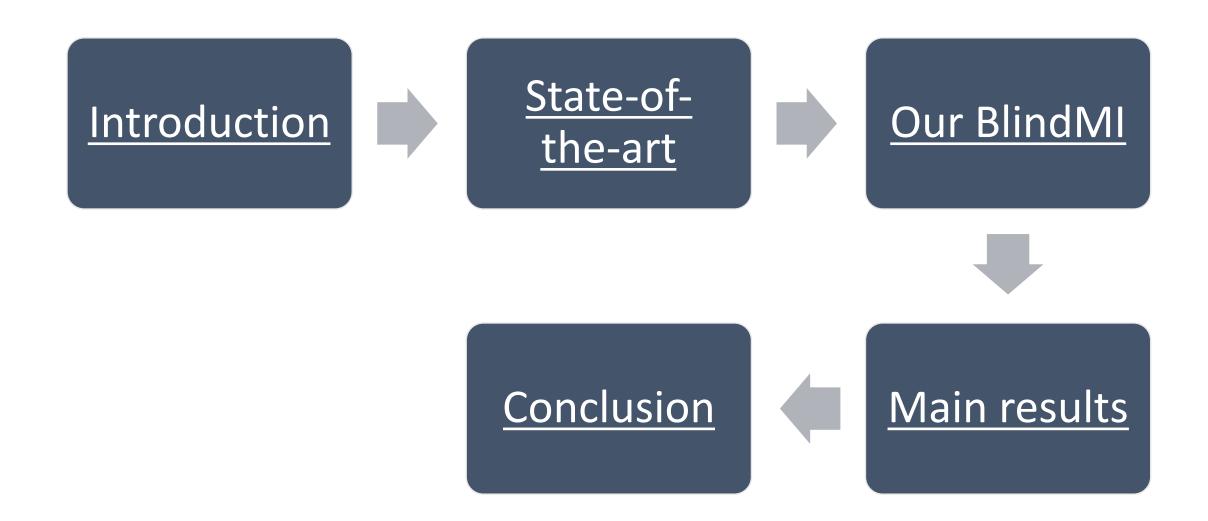


Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui^{1*}, Yuchen Yang^{1*}, Haolin Yuan^{1*}, Philippe Burlina², Neil Zhenqiang Gong³, Yinzhi Cao¹ ¹The Johns Hopkins University ²The Johns Hopkins University Applied Physics Laboratory ³Duke University

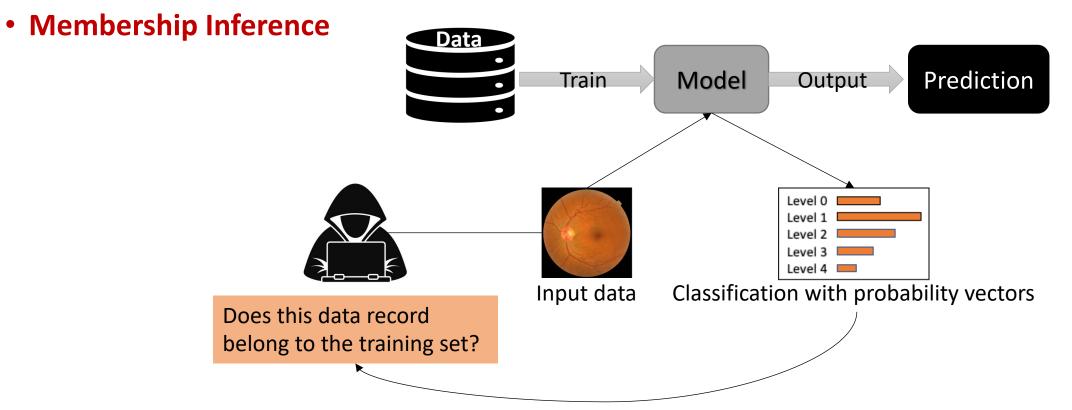
*Equal contribution



Introduction

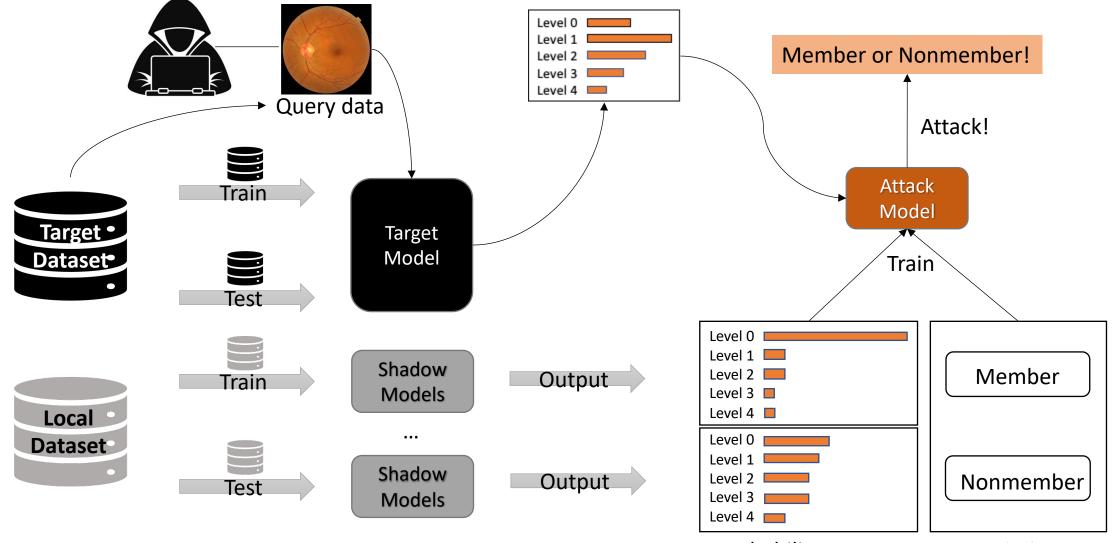
Privacy In Machine Learning

- Model
- Data



Membership Inference Attack (State-of-the-art)

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.



Probability vectors

Label

What if the shadow model is not like the target model?

The attack F-1 score decreases.

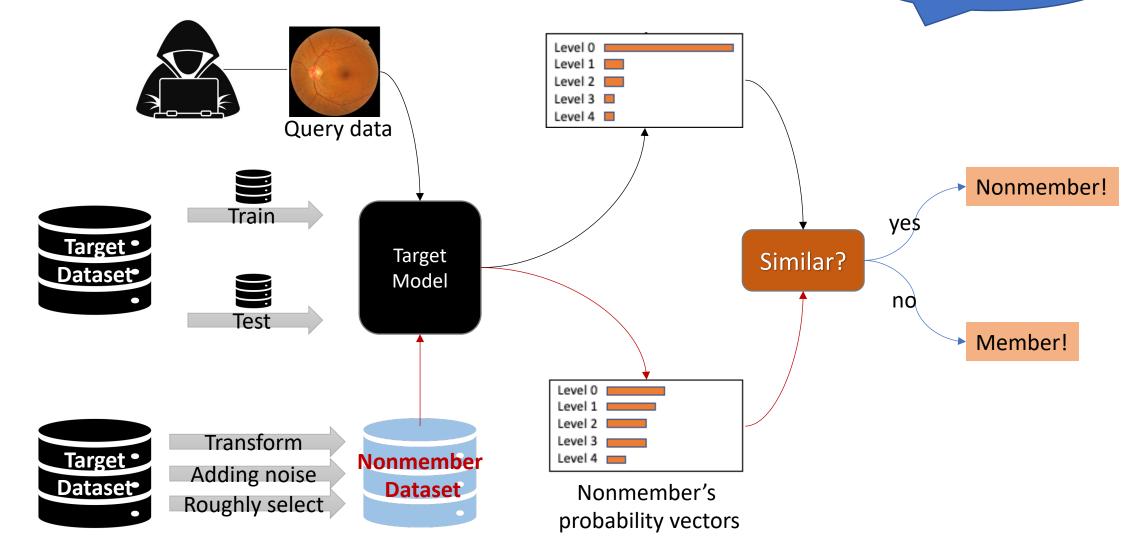
	Target Model	Shadow Model	Attack F1-Score	
		ResNet50	0.9384	
CIFAR-100	ResNet50	VGG16	0.7217	
		CNN	0.8861	
		ResNet101	0.9675	
CUB	ResNet101	VGG19	0.8486	
		DensNet121	0.6389	

How we deal with this problem?

Give up the shadow models!

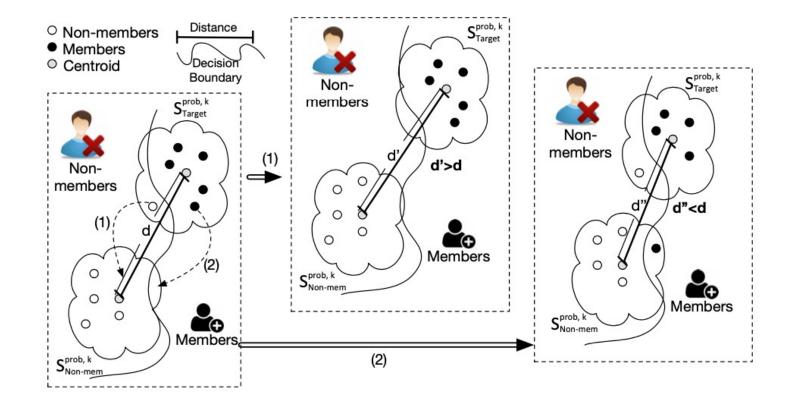
Our Attack: BlindMI

No Shadow Models!



Variations

- BlindMI-1Calss:
 - Train a one-class SVM model on the nonmember set
- BlindMI-Diff:
 - A novel approach: differential comparison



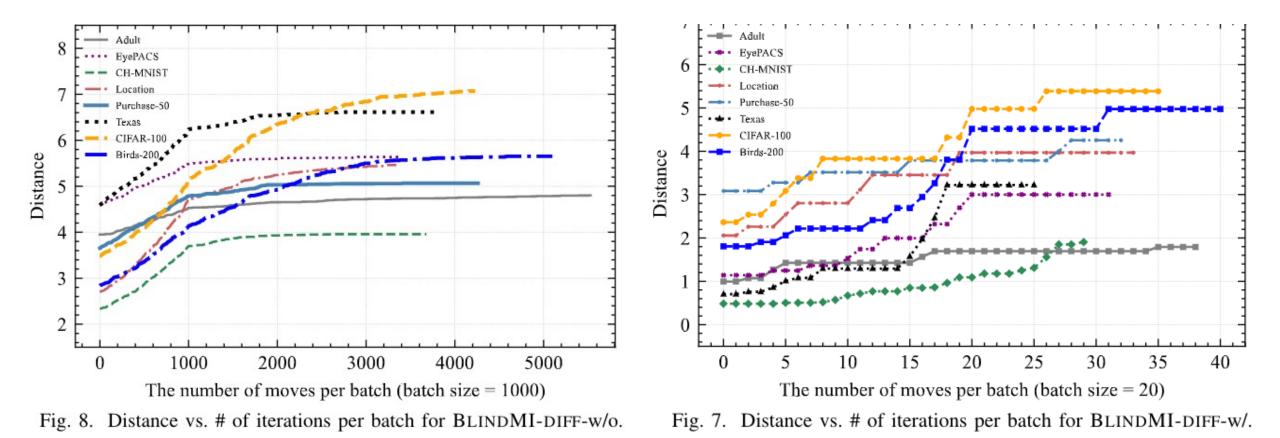
Main results

Q3

Dataset description

Dataset # of classes		Description	Resolution	Training set size
Adult	Adult 2 census income records		N/A	16,280
EyePACS	5	retina images with diabetic retinopathy	150×150	10,000
CH-MNIST	8	histological images of colorectal cancer	64×64	2,500
Location	30	mobile users' location check-in records	N/A	2,505
Purchase-50	50	shoppers' purchase histories	N/A	10,000
Texas	100	inpatients stays in health facilities	N/A	10,000
CIFAR-100	100	object recognition dataset	32×32	10,000
Birds-200	200	photos of birds species	150×150	5,894

Effectiveness: the distance *does* increase



State-of-the-art attacks description

- *NN:* train a NN model from all features. [1]
- Top3-NN: train a NN model from top three features. [3]
- **Top1-Threshold:** compare the top feature with a threshold. [3]
- Loss-Threshold: compute a cross-entropy loss and compare. [2]
- Label Only: classify a sample as a member if the predicted class is correct. [2]
- *Top2+True:* our improved version of Top3-NN with the ground-truth label.

[1] Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE Symposium on Security and Privacy (SP).

[2] S. Yeom, I. Giacomelli, M. Fredrikson and S. Jha, "Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting" 2018 IEEE 31st Computer Security Foundations Symposium (CSF)

[3] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, "Ml-leaks: Model and data independent membership inference attacks and defense son machine learning models." 2019 Network and Distributed Systems Security Symposium (NDSS).

Comparison with State-of-theart Attacks

No more shadows Add more stability

	Attack	Adult	EyePACS	CH-MNIST	Location	Purchase-50	Texas	CIFAR-100	Birds-200
	NN	40.6 ± 7.32	69.1 ± 0.02	71.7 ± 3.53	78.4 ± 3.23	59.4 ± 11.9	76.7 ± 2.20	83.1 ± 3.53	58.3 ± 27.4
pu	Top3-NN	26.7 ± 7.25	69.5 ± 1.04	70.9 ± 4.03	78.1 ± 3.39	59.6 ± 12.1	76.8 ± 2.07	81.7 ± 6.66	68.6 ± 21.3
Blind	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
	BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	$\textbf{78.0} \pm \textbf{0.31}$	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
X	Top2+True	52.1 ± 6.27	73.4 ± 0.41	75.4 ± 1.84	83.3 ± 2.24	62.9 ± 10.7	83.4 ± 1.29	80.9 ± 7.85	69.5 ± 25.6
Śb	Loss-Threshold	56.2 ± 0.77	73.8 ± 0.57	71.8 ± 4.01	47.7 ± 19.7	48.1 ± 18.6	69.6 ± 9.60	85.6 ± 5.09	71.2 ± 13.7
Blackbox	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
1	BlindMI	66.0 ± 0.28	80.6 ± 1.90	$\textbf{77.2} \pm \textbf{1.83}$	$\textbf{87.3}\pm\textbf{0.70}$	79.9 \pm 0.57	$\textbf{86.7} \pm \textbf{0.37}$	94.8 ± 0.14	97.2 ± 0.03
pu	NN	54.3 ± 5.50	72.3 ± 0.08	73.5 ± 1.99	85.6 ± 0.71	77.0 ± 0.36	83.4 ± 0.83	93.2 ± 0.46	96.8 ± 0.28
Bli	Top3-NN	56.4 ± 9.27	74.8 ± 0.37	73.6 ± 1.80	85.7 ± 0.69	77.2 ± 0.34	83.4 ± 0.90	93.2 ± 0.80	93.2 ± 0.03
ray-Blind	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
- B	BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	$\textbf{78.0} \pm \textbf{0.31}$	85.5 ± 0.80	93.9 ± 0.63	$\textbf{96.8} \pm \textbf{0.09}$
	Top2+True	66.0 ± 0.50	77.3 ± 0.69	75.1 ± 2.03	86.0 ± 0.55	78.4 ± 0.25	85.7 ± 0.18	93.8 ± 0.53	96.9 ± 0.18
Graybox	Loss-Threshold	57.0 ± 0.84	76.8 ± 0.68	73.0 ± 2.90	75.9 ± 4.96	71.8 ± 2.70	76.5 ± 4.81	87.1 ± 3.39	85.3 ± 0.89
	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
G	BlindMI	66.0 ± 0.30	80.6 ± 1.90	$\textbf{77.2} \pm \textbf{1.83}$	$\textbf{87.3}\pm\textbf{0.70}$	$\textbf{79.9} \pm \textbf{0.57}$	$\textbf{86.7} \pm \textbf{0.37}$	94.8 ± 0.14	$\textbf{97.2} \pm \textbf{0.03}$

 Δ 0

 $\triangle 28.2$ $\triangle 17.6$

 \triangle 38.5

Different nonmember generations:

• Transformation is the best.

TABLE XI. MMD STATISTICAL TESTS OF BLINDMI-DIFF WITH NONMEMBER DATASETS GENERATED VIA DIFFERENT METHODS (EACH VALUE IS THE MMD WITH STANDARD ERROR OF THE MEAN BETWEEN CORRESPONDING SAMPLES AND REAL-WORLD NON-MEMBERS IN THE TEST DATASET.)

Sample trans	Random perp	Random generation	Cross domain	Training set
$\textbf{0.194} \pm \textbf{0.009} \big \textbf{0.194} \textbf{0.009} \big \textbf{0.194} 0.19$	0.438 ± 0.039	3.024 ± 1.024	0.225 ± 0.015	1.864 ± 0.022

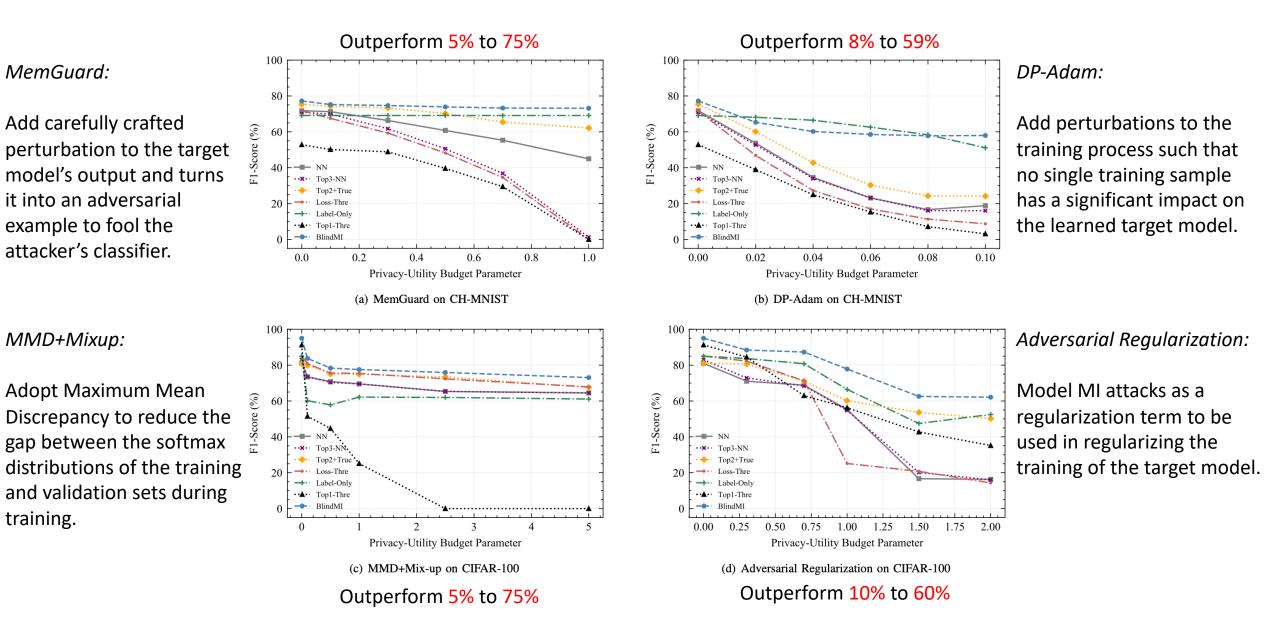
TABLE XII. F1-SCORE (%) WITH STANDARD ERROR OF MEAN FOR DIFFERENT KERNEL FUNCTIONS OF BLINDMI-DIFF

		Gaussian (default)	Laplacian	Linear	Sigmoid	Polynomial
	Adult	64.2±1.59	$60.3 {\pm} 0.38$	$40.7 {\pm} 0.20$	$51.1 {\pm} 0.41$	$58.4 {\pm} 1.02$
	EyePACS	$77.7 {\pm} 0.80$	$67.3{\pm}0.31$	$71.8{\pm}0.93$	$72.8{\pm}0.87$	$73.9 {\pm} 0.88$
/w	CH-MNIST	75.1±1.49	$73.1{\pm}0.92$	$72.4{\pm}0.53$	$71.3{\pm}0.71$	72.7 ± 1.20
DIFF-w/	Location	$86.2 {\pm} 0.90$	$85.1 {\pm} 2.42$	$83.4{\pm}0.98$	$79.8 {\pm} 1.52$	76.7 ± 0.17
DI	Purchase-50	$78.0 {\pm} 0.31$	$68.9{\pm}0.50$	$75.8{\pm}0.61$	$71.1 {\pm} 1.05$	66.0 ± 0.99
	Texas	$85.5 {\pm} 0.80$	$83.6{\pm}0.47$	$81.2{\pm}0.29$	$80.9{\pm}0.49$	$81.9 {\pm} 1.72$
	CIFAR-100	93.9±0.63	$93.3{\pm}0.79$	$87.9 {\pm} 1.09$	$86.9 {\pm} 1.02$	$90.1 {\pm} 0.83$
	Birds-200	96.8±0.09	$91.9{\pm}1.32$	$95.7 {\pm} 1.06$	$94.4 {\pm} 1.31$	$93.9{\pm}0.96$

Different kernel functions:

• Gaussian is the best.

Evaluation against State-of-the-art Defenses



F1-Score vs. Nonmember-to-Member Ratio

- Ratio↑ Attack↓
- BlindMI outperform 35%

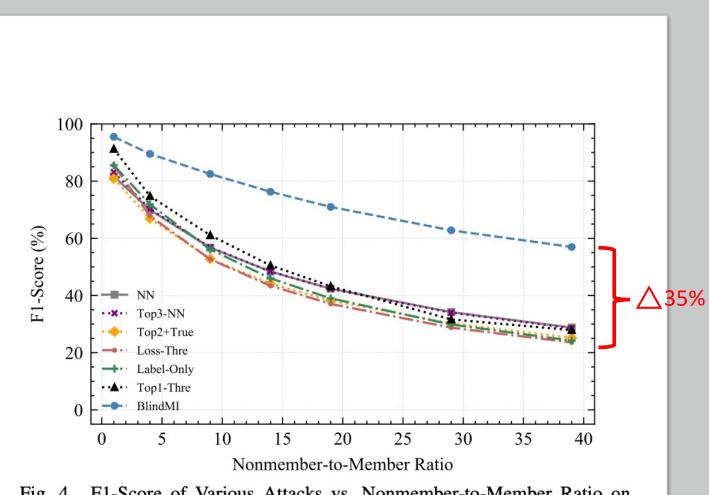
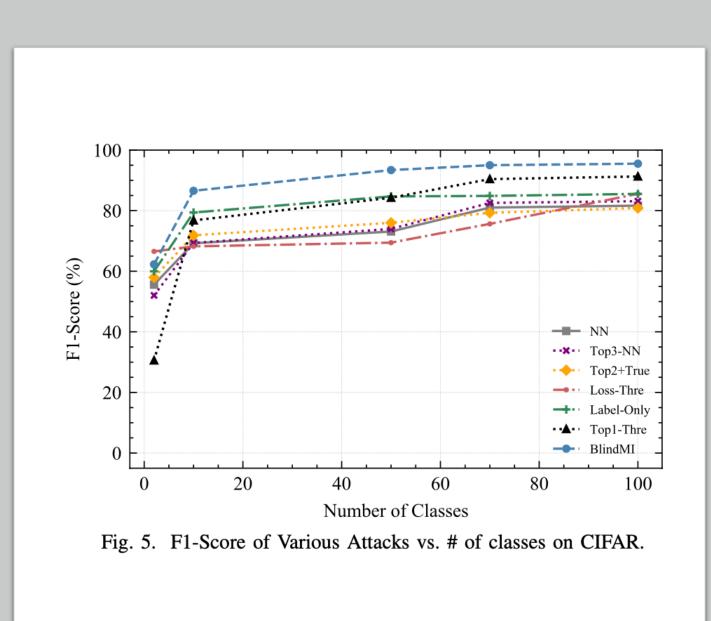


Fig. 4. F1-Score of Various Attacks vs. Nonmember-to-Member Ratio on CIFAR-100.

F1-score vs. # of Classes

- Class↑ Attack↑
- BlindMI outperform 5%-30%



Conclusion

- We design a membership inference attack BlindMI using a novel technique, called differential comparison.
- Our evaluation shows that BlindMI outperforms state-of-the-art MI attacks under different settings.
- Our implementation is open-source at this repository:
- <u>https://github.com/hyhmia/BlindMI</u>