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Abstract. Different from human nature, it is still common practice to-
day for vision tasks to train deep learning models only initially and on
fixed datasets. A variety of approaches have recently addressed handling
continual data streams. However, extending these methods to manage
out-of-distribution (OOD) scenarios has not effectively been investigated.
On the other hand, it has recently been shown that non-continual neural
mesh models exhibit strong performance in generalizing to such OOD
scenarios. To leverage this decisive property in a continual learning set-
ting, we propose incremental neural mesh models that can be extended
with new meshes over time. In addition, we present a latent space initial-
ization strategy that enables us to allocate feature space for future unseen
classes in advance and a positional regularization term that forces the
features of the different classes to consistently stay in respective latent
space regions. We demonstrate the effectiveness of our method through
extensive experiments on the Pascal3D and ObjectNet3D datasets and
show that our approach outperforms the baselines for classification by
2− 6% in the in-domain and by 6− 50% in the OOD setting. Our work
also presents the first incremental learning approach for pose estimation.
Our code and model can be found at github.com/Fischer-Tom/iNeMo.

Keywords: Class-incremental learning · 3D pose estimation

1 Introduction

Humans inherently learn in an incremental manner, acquiring new concepts
over time, with little to no forgetting of previous ones. In contrast, trying to
mimic the same behavior with machine learning suffers from catastrophic for-
getting [21, 36, 37], where learning from a continual stream of data can de-
stroy the knowledge that was previously acquired. In this context, the prob-
lem was formalized as class-incremental learning and a variety of approaches
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Fig. 1: We present iNeMo that can perform class-incremental learning for pose
estimation and classification, and performs well in out-of-distribution scenarios. Our
method receives tasks T i over time that consist of images with camera poses for new
classes. We build up on Neural Mesh Models (NeMo) [52] and abstract objects with
simple cuboid 3D meshes, where each vertex carries a neural feature. The neural meshes
are optimized together with a 2D feature extractor Φi and render-and-compare can then
be used to perform pose estimation and classification. We introduce a memory that
contains an old feature extractor Φi−1 for distillation, a replay buffer E1:(i−1) and a
growing set of neural meshes N. Our results show that iNeMo outperforms all baselines
for incremental learning and is significantly more robust than previous methods.

have been proposed to address catastrophic forgetting for models that work in-
distribution [11,17,26,30,31,45]. However, extending these methods to effectively
manage out-of-distribution (OOD) scenarios [64] to the best of our knowledge
has not been investigated.

Neural mesh models [52] embed 3D object representations explicitly into
neural network architectures, and exhibit strong performance in generalizing
to such OOD scenarios for classification and 3D pose estimation. However, as
they consist of a 2D feature extractor paired with a generative model, their
extension to a continual setting with existing techniques is not straight forward.
If one would only apply those techniques to the feature extractor, the previously
learned neural meshes would become inconsistent and the performance of the
model would drop.

In this paper, we therefore present a strategy to learn neural mesh models
incrementally and refer to them as incremental Neural Mesh Models (iNeMo).
As shown in Figure 1, in addition to the conventional techniques of knowledge
distillation and maintaining a replay buffer, our approach introduces a memory
that contains a continuously growing set of meshes that represent object cat-
egories. To establish the learning of the meshes in an incremental setting, we
extend the contrastive learning from [52] by a latent space initialization strategy
that enables us to allocate feature space for future unseen classes in advance, and
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a positional regularization term that forces the features of the different classes
to consistently stay in respective latent space regions. Through extensive eval-
uaitons on the Pascal3D [61] and ObjectNet3D [60] datasets, we demonstrate
that our method outperforms existing continual learning techniques and further-
more surpasses them by a large margin for out-of-distribution samples. Overall,
our work motivates future research on joint 3D object-centric representations.
In summary, the contributions of our work are:

1. For the first time, we adapt the conventional continual learning techniques
of knowledge distillation and replay to the 3D neural mesh setting.

2. We propose a novel architecture, that can grow by adding new meshes for
object categories over time.

3. To effectively train the features of the meshes, we introduce a strategy to
partition the latent space and maintain it when new tasks are integrated.

4. We demonstrate that incremental neural mesh models can outperform 2D
baselines that use existing 2D continual learning techniques by 2−6% in the
in-domain and by 6− 50% in the OOD setting.

5. Finally, we introduce the first incremental approach for pose estimation and
show that the neural mesh models outperform 2D baselines.

2 Related Work

2.1 Robust Image Classification and Pose Estimation

Image Classification has always been a cornerstone of computer vision. Ground-
breaking models such as ResNets [13], Transformers [51], and Swin Transform-
ers [32] have been specifically designed for this task. However, these models
predominantly target the in-distribution setting, leading to a significant gap
in performance when faced with challenging benchmarks that involve synthetic
corruptions [14], occlusions [55], and out-of-distribution (OOD) images [64]. At-
tempts to close this performance gap have included data augmentation [15] and
innovative architectural designs, such as the analysis-by-synthesis approach [22].
Along this line of research, recently neural mesh models emerged as a family
of models [35, 52–54] that learn a 3D pose-conditioned model of neural features
and predict 3D pose and object class [19] by minimizing the reconstruction error
between the actual and rendered feature maps using render-and-compare. Such
models have shown to be significantly more robust to occlusions and OOD data.
However, they can so far only be trained on fixed datasets. In this work, we
present the first approach to learn them in a class-incremental setting.
Object Pose Estimation has been approached primarily as a regression prob-
lem [39,50] or through keypoint detection and reprojection [66] in early methods.
More recent research [18,25] addresses object pose estimation in complex scenar-
ios like partial occlusion. NeMo [52] introduces render-and-compare techniques
for category-level object pose estimation, showcasing enhanced robustness in
OOD conditions. Later advancements in differentiable rendering [56] and data
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augmentation [23] for NeMo have led to further improvements in robust category-
level object pose estimation, achieving state-of-the-art performance. However,
these approaches are confined to specific object categories and are designed for
fixed training datasets only. In contrast, our method for the first time extends
them to the class-incremental setting.

2.2 Class-Incremental Learning

Class-incremental learning (also known as continual learning [2, 10, 33] and life-
long learning [1,8,9]) aims at learning models from sequences of data. The foun-
dational work of [6, 45] replays exemplary data from previously seen classes.
The simple strategy has inspired successive works [7, 58]. However, for such
methods, sampling strategies and concept drift can impact overall performance.
As a mitigation, more recent methods [17, 59] combine replay with other no-
table regularization schemes like knowledge distillation [26]. In general, class-
incremental methods leverage one or more principles from the following three
categories: (1) exemplar replay methods build a reservoir of samples from old
training rounds [4, 28, 31, 34, 43, 45, 47] and replay them in successive training
phases as a way of recalling past knowledge, (2) regularization-based (distillation-
based) methods try to preserve the knowledge captured in a previous version
of the model by matching logits [26, 45], feature maps [11], or other informa-
tion [20, 27, 42, 48, 49, 57] in the new model, and (3) network-architecture-based
methods [29,57] design incremental architectures by expanding the network ca-
pacity for new class data or freezing partial network parameters to retain the
knowledge about old classes.

In our work, we make use of principles from all three of the above by leverag-
ing a replay memory, presenting a novel regularization scheme and adding newly
trained neural meshes to the model over time. To the best of our knowledge, our
method is the first to combine a 3D inductive bias with these strategies.

3 Prerequisites

3.1 Class Incremental Learning (CIL)

Conventionally, classification models are trained on a single training dataset
T that contains all classes. Multi-class incremental learning departs from this
setting by training models on sequentially incoming datasets of new classes that
are referred to as tasks T 1, T 2, ..., T Ntask , where each task may contain more than
one new class. After training on a new task T i, the model may be evaluated on
a test dataset D1:i that contains classes from all tasks up to i.

When being trained on new tasks through a straightforward fine-tuning, mod-
els suffer from catastrophic forgetting [21], which leads to bad performance on
the previously seen classes. An intuitive approach to mitigate this effect is to
use a replay buffer [45] that stores a few examplars |E i| ≪ |T i| from previous
tasks and includes them with training data of the new task. Another common
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technique is knowledge distillation [16,26] that keeps a copy of the model before
training on the new task and ensures that distribution of the feature space from
the old and new models are similar when presented the new data.

3.2 Neural Mesh Models

Neural mesh models combine a 2D feature extractor with generative 3D models,
as shown by Wang et al. [52] in their Figure 1. The generative models are simple
3D abstractions in the form of cuboids for each class c that are represented
as meshes Nc = (Vc,Ac, Θc), where Vc denotes the vertices, Ac denotes the
triangles and Θc denotes the neural vertex features. The meshes are additionally
accompanied by a set of background features B. Given camera intrinsics and
extrinsics, a mesh can then be rendered to a 2D feature map. The 2D feature
extractor is usually a 2D CNN Φ(I) that takes the image as input to extract a
feature map and is shared among all classes [19]. Render-and-compare can then
be used to check if the features rendered from the mesh align with the features
extracted from the image to perform pose estimation [52] or classification [19].
We denote a normalized feature vector at vertex k as θkc , its visibility in the
image as okc , its projected integer image coordinates as πc(k), and fπc(k) as the
normalized feature vector from the 2D feature extractor that corresponds to the
rendered vertex k.

During training, images and object poses are provided, and the vertex fea-
tures Θ, background features B, and the 2D feature extractor Φ are trained. We
model the probability distribution of a feature f being generated from a vertex
vkc by defining P (f |θkc ) using a von Mises-Fisher (vMF) distribution to express
the likelihood:

P (f |θkc , κ) = C(κ)eκ(f
⊤·θk

c ) , (1)

with mean θkc , concentration parameter κ, and normalization constant C(κ) [52].
In the next step, the extracted feature fπc(k) is inserted into P (f |θkc , κ) and
maximized using contrastive learning. Simultaneously, the likelihood of all other
vertices and background features is minimized:

max P (fπc(k)|θ
k
c , κ), (2)

min
∑

θm∈θ̄k
c

P (fπc(k)|θ
m, κ), (3)

where the alternative vertices are defined as θ̄kc = {B ∪Θc̄ ∪ (Θc \N k
c )} with the

neighborhood N k
c = {θi | ∥vki − vkc ∥ < R∧ vki ∈ Vc \ vck} around vkc determined

by some pre-defined distance threshold R. We formulate the Equations 2 and 3
into a single loss by taking the negative log-likelihood:

Ltrain = −
∑
k

okc · log(
eκ(f

⊤
πc(k)·θ

k
c )∑

θm∈θ̄k
c
e
κ(f⊤

πc(k)
·θm)

), (4)

where considering κ as a global hyperparameter allows cancelling out the nor-
malization constants C(κ).

https://openreview.net/pdf?id=pmj131uIL9H
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The concentration parameter κ determines the spread of the distribution and
can be interpreted as an inverse temperature parameter. In practice, the neural
vertex features Θ and the background features B are unknown and need to be
optimized jointly with the feature extractor Φ. This makes the training process
initially ambiguous, where a good initialization of Φ and Θ is critical to avoid
divergence. After each update of Φ, we therefore follow Bai et al. [3] and use the
momentum update strategy to train the foreground model Θc of a class c, as
well as the background model B:

θk,newc ←− okc (1− η) · fπc(k) + (1− okc + η · okc )θkc , (5)

where η is the momentum parameter. The background model B is updated by
sampling Nbgupdate feature vectors at pixel positions that are not matched to any
vertex of the mesh and replace the Nbgupdate oldest features in B. Both Nbgupdate

and η are hyperparameters. For a more detailed description of this process, we
refer to the supplementary material.

4 Incremental Neural Mesh Models (iNeMo)

Our goal is to learn a model that generalizes robustly in OOD scenarios, while be-
ing capable of performing class-incremental learning. To achieve this, we build up
on neural mesh models [52] and present a novel formulation for class-incremental
learning for classification and object pose estimation that we call iNeMo. An
overview is provided in Figure 1.

Challenges in CIL. In the non-incremental setting, the contrastive loss in
Equation 4 does not explicitly enforce separating classes, although in practice
it is observed that the classes are separated well and accurate classification can
be achieved [19]. A naive extension of neural mesh models to class-incremental
learning is to simply add a mesh Nc for each new class. However, the challenge lies
in updating the shared 2D feature extractor Φ. If adding classes naively, achieving
a discriminative latent space requires restructuring it as a whole and therefore
implies significant changes in both, the CNN backbone Φ and the neural meshes
Θ, leading to catastrophic forgetting if no old training samples are available or
other measures are taken. Therefore, in the following we present a novel class-
incremental learning strategy that maintains a well structured latent space from
the beginning.

4.1 Initialization

Latent Space. As the features θkc are normalized, they lie on a unit sphere.
We therefore define an initial population H = {hj |hj ∈ Rd ∧ ∥hj∥ = 1} of the
latent space for all vertices and classes by uniformly sampling the sphere. To
partition the latent space, we define a fixed upper bound of classes N . We then
generate centroids E = [e1, ..., eN ] for all the classes on the unit sphere that are
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Fig. 2: Overview of Regularization: a) The features are constrained to lie on a
unit sphere and the latent space is initially uniformly populated. Centroids ei are then
computed to lie maximally far apart, and the feature population is partitioned for a
maximum number of classes. b) When starting a new task, the vertex features for
each new cube from this task are randomly initialized from some class partition. By
projecting the locations of the vertices to images, corresponding image features are
determined as illustrated by the orange star. c) To avoid entanglement, we regularize
the latent space by constraining the image feature to stay within the class partition
using Letf . d) We then employ the contrastive loss Lcont that pulls the vertex and
image features together and separates the image feature from other features of its own,
and the other meshes.

pairwise maximally far apart by solving the equation for a simplex Equiangular
Tight Frame (ETF) [40]:

E =

√
N

N − 1
U(IN −

1

N
1N1⊤

N ) , (6)

where IN denotes the n−dimensional identity matrix, 1n is an all-ones vector,
and U ∈ Rd×n is any matrix that allows rotation. The column vectors are of
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equal Euclidean norm and any pair has an inner product of e⊤i · ej = − 1
N−1 for

i ̸= j, which together ensures pairwise maximum distances. Finally, we assign
the features hj to classes by determining the respective closest centroid from E,
which leads to a partitioning H1, ...,HN of H. An illustration of this strategy
is provided in Figure 2 a).

Task T i. At the start of each task, we need to introduce new neural meshes.
Following Wang et al. [52], for each new class c we initialize Nc as a cuboid
where its dimensions are determined from ground-truth meshes and vertices are
sampled on a regular grid on the surface. As illustrated in Figure 2 b), we then
pick the partition Hc of initial features and randomly assign them to the vertices
of the new mesh Θc. We initialize the feature extractor Φ0 with unsupervised
pre-training using DINO-v1 [5]. As shown in Figure 1, to train for a new task,
we make a copy Φi = Φi−1 and then leverage Φi−1 for knowledge distillation. If
available, we discard any old network Φi−2.

4.2 Optimization

Positional Regularization. To ensure that our latent space maintains the
initial partitioning over time, we introduce a penalty of the distance of the neural
features Θc to their corresponding class centroid ec:

Letf = −
∑
k

okc · log

(
eκ2(f

⊤
πc(k)·ec)∑

em∈E e
κ2(f⊤

πc(k)
·em)

)
. (7)

This is illustrated in Figure 2 c).

Continual Training Loss. We denote any unused partitions in H with H̄ and
limit the spread of the neural meshes in the current task to refrain from H̄ by
posing the following additional contrastive loss:

Lcont = −
∑
k

okc · log

(
eκ1(f

⊤
πc(k)·θ

k
c )∑

θm∈θ̄k
e
κ1(f⊤

πc(k)
·θm)

+
∑

hj∈H̄ e
κ1(f⊤

πc(k)
·hj)

)
. (8)

The denominator is split into two parts, where the first one minimizes Equation 3
and the second part corresponds to the additional constraint imposed by the
features in the unused partitions H̄. This is illustrated in Figure 2 d).

Knowledge Distillation. To mitigate forgetting, as indicated in Figure 1, we
additionally use a distillation loss after the initial task. The new inputs are
also fed through the frozen backbone Φi−1 of the previous task to obtain its
feature map. Specifically, let f̂πc(k) denote the old feature for the vertex k. To
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distill classes from previous tasks into Φi, we formulate the distillation using the
Kullback-Leibler divergence:

Lkd = −
∑
k

∑
m

pm(f̂πc(k)) log(
pm(f̂πc(k))

pm(fπc(k))
), (9)

where:

pm(fπc(k)) =
eκ3(f

⊤
πc(k)·θm)∑

θm∈Θi−1 e
κ3(f⊤

πc(k)
·θm)

. (10)

Note that, unless we are considering an exemplar of a previous task, the real
corresponding feature θkc is not even considered in this formulation. However,
the aim here is not to optimize Φi for the current task, but to extract the dark
knowledge [16] from Φi−1 about classes from previous tasks. Consequently, the
concentration κ3 < 1 has to be small to get usable gradients from all likelihoods.

Continual Training. During training of Φi, we optimize the combined training
objective:

L = Lcont + λetfLetf + λkdLkd, (11)

where λetf and λkd are weighting parameters.

4.3 Exemplar Selection

At each training stage, we randomly remove exemplars from old classes to equally
divide our replay buffer for the current number of classes. Xiang et al. [61] showed
that certain classes are heavily biased towards certain viewing angles. Therefore,
to increase the robustness and accuracy for rarely appearing view directions, we
propose an exemplar selection strategy that takes viewing angles into account.
Assuming we want to integrate a new class and the available slots for it are
m, we build a b-bin histogram across the azimuth angles and randomly select
⌊m/b⌋ exemplars for each bin. When insufficient exemplars are available for a
bin we merge it together with a neighboring one. In case the process yields less
than m exemplars in total, we fill up remaining slots with random samples.
When reducing the exemplar sets, we evenly remove samples from each bin to
maintain the balance across the azimuth angle distribution.

4.4 Inference

Classification. Following Jesslen et al. [19], we perform classification via a
vertex matching approach. For each feature fi in the produced feature map of
Φ, we compute its similarities to the foreground (Θ) and background (B) models.
We define the background score siβ and the class scores si for each class c as

sic = max
θl
c∈Θc

f⊤
i · θlc, (12)

siβ = max
βl∈B

f⊤
i · βl, (13)
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where we identify a feature as being in the foreground F , if there is at least one
sic > siβ and classify based on the foreground pixels only.

In contrast to Jesslen et al. [19], we additionally include an uncertainty term
to reduce the influence of features that can not be identified with high confidence.
In the following, we denote the n−th largest class score for feature fi as max

(n)
Si .

The final score of class y is then given as

sy = max
i∈F

[
siy − (1− (max

(1)
si −max

(2)
si ))

]
, (14)

where the subtracted term indicates a measure of confusion estimated based
on the difference of the two highest class scores for foreground feature fi. The
predicted category is then simply the class c that maximizes this score.

Pose Estimation. For pose estimation we use the same render-and-compare
approach as Wang et al. [52] together with the template matching proposed by
Jesslen et al. [19] for speedup. For more information about the pose estimation,
we refer the reader to the supplemental material.

5 Experiments

In the following, we explain the experimental setup and then discuss the results
of our incremental neural mesh models for image classification and 3D pose
estimation on both, in-domain and OOD datasets. For a comprehensive ablation
study of all components of our model, we refer to the supplemental material.

5.1 Datasets and Implementation Details

In-Domain-Datasets. PASCAL3D+ [62] (P3D) has high-quality camera
pose annotations with mostly unoccluded objects, making it ideal for our set-
ting. However, with only 12 classes it is small compared to other datasets used in
continual learning [24, 46]. ObjectNet3D [60] (O3D) contains 100 classes and
presents a significantly more difficult setting. Camera pose annotations are less
reliable and the displayed objects can be heavily occluded or truncated, making
both the vertex mapping and the update process noisy.

OOD-Datasets. The Occluded-PASCAL3D+ [55] (O-P3D) and corrupted-
PASCAL3D+ (C-P3D) datasets are variations of original P3D and consist of a
test dataset only. In the O-P3D dataset, parts of the original test datasets have
been artificially occluded by superimposing occluders on the images with three
different levels: L1 (20%− 40%), L2 (40%− 60%) and L3 (60%− 80%). The C-
P3D dataset, on the other hand, follows [14] and tests robustness against image
corruptions. We evaluate 19 different corruptions with a severity of 4 out of 5, us-
ing the imagecorruptions [38] library. Finally, we consider the OOD-CV [64]
dataset, which provides a multitude of severe domain shifts.
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Table 1: Average classification accuracies on Pascal3D (P3D) and ObjectNet3D
(O3D). Training data has been split into a base task (denoted Bn for size n) and
evenly sized increments (denoted +n for size n). As visible, our method consistently
outperforms the baselines by a significant margin.

Metric Method Repr.
P3D O3D

B0 + 6 B0 + 3 B0 + 20 B0 + 10 B50 + 10

LWF R50. 93.83 89.34 67.78 48.82 46.73
FeTrIL R50. 95.64 96.82 67.18 70.34 70.43

Classification FeCAM R50. 84.85 64.36 67.96 69.59 72.21
acc(1 : i) in % ↑ iCaRL R50 97.1 93.80 72.55 57.46 64.02

DER R50 96.69 94.18 78.55 76.33 75.17
Podnet R50 95.13 91.71 71.96 65.21 72.98
Ours NeMo 98.82 98.21 89.25 88.85 84.20

Implementational Details. We choose a ResNet50 architecture for our fea-
ture extractor Φ with two upsampling layers and skip connections, resulting in
a final feature map at 1

8 of the input resolution. Each neural mesh Ny contains
approximately 1, 100 uniformly distributed vertices with a neural texture of di-
mension d = 128. We train for 50 epochs per task, with a learning rate of 1e− 5
that is halved after 10 epochs. The replay buffer can store up to 240 and 2, 000
samples for P3D and O3D respectively. Our feature extractor is optimized us-
ing Adam with default parameters and the neural textures Θ are updated with
momentum of η = 0.9. During pose estimation, we initialize the camera pose
using template matching as proposed by [19] and optimize it with PyTorch3D’s
differentiable rasterizer [44]. The initial camera pose is refined by minimizing
the reconstruction loss between the feature map produced by Φ and the ren-
dered mesh. We use Adam with a learning rate of 0.05 for 30 total epochs and
a distance threshold R = 48 to measure the neighborhood N k

c in Equation 8.
Each term in the combined loss in Equation 11 is assigned a weighting and con-
centration parameter. The weighting parameters are λetf = 0.2 and λkd = 2.0
and as concentration parameters we choose κ1 = 1/0.07 ≈ 14.3, κ2 = 1, and
κ3 = 0.5. We provide further details on the training settings of the baselines in
the supplemental material.

Evaluation. We evaluate our method and its baselines on both, class-incremental
classification and class-incremental pose estimation. For the methods trained on
P3D, we evaluate on the P3D test dataset, the O-P3D dataset, and the C-P3D
dataset. When training on O3D or OOD-CV, we evaluate on their correspond-
ing test dataset only. For classification, we follow previous work [26, 31, 45] and
consider the mean accuracy over all tasks acc(1 : i) of Φi, after training on T i on
test dataset D for classes 1..i. The 3D pose of an object can be represented with
azimuth, elevation, and roll angle. We measure the deviation of predicted and
ground-truth pose in terms of these angles according to the error of the predicted
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Table 2: Average classification and pose estimation accuracies on Pascal3D (P3D) and
its variants. As visible, iNeMo outperforms all 2D baselines consistently for classifica-
tion and by an especially large margin for the OOD and strong occlusion cases. We
also present the first approach for incremental pose estimation and outperform other
methods in most cases for π/6, while we consistently outperform them for the tighter
error bound π/18. Note that for all evaluations except OOD-CV, we use the model
trained on 4 tasks that is also displayed in Figure 3. As OOD-CV provides a separate
training set of 10 classes, we consider 2 tasks with 5 classes.

Metric Method Repr.
P3D Occluded P3D C-P3D OOD-CV

L1 L2 L3

LWF R50 89.34 30.58 21.64 14.65 66.17 57.61
FeTrIL R50 96.82 88.34 76.28 55.89 39.02 63.74

acc(1 : i) in % ↑ FeCAM R50 84.85 52.53 42.75 34.28 42.38 56.05
Classification iCaRL R50 93.80 34.95 26.00 16.93 76.24 61.80

DER R50 94.18 49.70 36.86 22.76 69.56 56.35
PODNet R50 91.91 42.40 32.99 22.43 68.46 57.10

Ours NeMo 98.21 94.19 87.20 71.55 83.09 80.82

LwF R50 53.47 44.58 39.77 36.61 53.55 30.65
Pose π/6 iCaRL R50 57.74 44.03 38.15 33.52 54.57 28.71
acc(1 : i) in % ↑ Ours NeMo 79.28 64.71 52.26 34.01 47.30 33.75

LwF R50 20.33 12.03 8.38 5.52 17.29 8.04
Pose π/18 iCaRL R50 22.76 11.04 7.33 4.56 17.81 8.04
acc(1 : i) in % ↑ Ours NeMo 51.73 35.53 26.88 10.672 23.02 12.8

and the ground-truth rotation matrix ∆(Rpred, Rgt) = ∥logm(R⊤
predRgt)∥F /

√
2

as proposed by [66]. Following previous work [52, 66], we report the accuracy
according to the thresholds π/6 and π/18.

Baselines. For the task of class-incremental learning, we compare against a col-
lection of replay-based and replay-free methods. For the replay-based methods,
we choose the seminal work iCaRL [45], and the more recent PODNet [11] and
DER [63]. For replay-free methods, we choose the seminal work LwF [26] and the
two state-of-the-art methods FeTrIL [41] and FeCAM [12]. All approaches are
implemented using the PyCIL library [65] and trained with the original hyper-
parameters as in [65]. For a fair comparison of all methods, we use the ResNet-50
backbone initialized with DINO-v1 [5] pre-trained weights.

To the best of our knowledge, incremental pose estimation with a class-
agnostic backbone has not been explored before. We define incremental pose
estimation baselines by discretizing the polar camera coordinates and formulate
pose estimation as a classification problem following [66]. More specifically, we
define 42 bins for each azimuth, elevation and roll angle, making it a 42 ·3 = 126
class classification problem [66]. This allows a straightforward extension of con-
ventional class-incremental learning techniques to the setting of pose estimation.
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Fig. 3: Comparison of classification performance decay over tasks for our method and
the baselines. Top-Left: Results for O3D (100 classes) split into 10 even tasks. Top-
Right: Results for P3D (12 classes) split into 4 even tasks. Bottom: Results for O-P3D
with occlusion levels L1, L2 and L3 after each task. One can observe that our method
outperforms all other methods. Especially in the occluded cases, our method outper-
forms them by a very large margin up to 70%, even still showing strong performance
for the largest occlusion level L3 with 60− 80% occlusions.

We provide such class-incremental pose estimation results using the training pro-
cedure of iCaRL [45] and LwF [26]. Both methods are trained for 100 epochs
per task using SGD with a learning rate of 0.01 as proposed by [66].

5.2 Robust Class-Incremental Classification

In Table 1, we provide the in-distribution classification results for P3D and
O3D. Our method outperforms the baselines in all cases, including the harder
O3D setting with 100 classes. Furthermore, Table 2 shows the comparison of
class-incremental results on all P3D variants for both, classification and 3D pose
estimation. As visible, our method outperforms the other methods with a large
margin under domain shifts: for the L3 occluded case, it is larger than 48%, for
the corrupted C-P3D it is larger than 6%, and for the OOD-CV dataset it is
larger than 19%. Figure 3 shows task-wise accuracy on the O3D/P3D dataset for
10 and 4 even tasks respectively, as well as the task-wise accuracy on the O-P3D
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Fig. 4: Comparison of the task-wise pose estimation accuracy on P3D for 4 even
tasks, where we show the thresholds left: π/6 and right: π/18. One can observe that
our method outperforms all other methods and retains high pose estimation accuracy
throughout the incremental training process. One can also observe that for pose estima-
tion, there is a stronger dependence on the difficulty of the considered classes instead
of the method’s ability to retain knowledge.

dataset for all occlusion levels. The same observation as before can be made,
where our method exhibits significantly less performance decay over new tasks.
This overall demonstrates that our incremental neural mesh models outperform
their baselines decisively in robustness.

5.3 Class Incremental Pose Estimation

Table 2 also shows that our method significantly outperforms both ResNet-50
based methods for the task of incremental pose estimation. As visible, the feature
representation learned by the 2D pose estimation networks is much less affected
by both, catastrophic forgetting and domain shifts. Figure 4 shows that the
performance decrease is much less severe across all tasks, where the difference in
performance is much more dependent on the difficulty of the considered classes
instead of the method’s ability to retain knowledge.

6 Conclusions

In this work, we introduce incremental neural mesh models, which enable robust
class-incremental learning for both, image classification and 3D pose estimation.
For the first time, we present a model that can learn new prototypical 3D repre-
sentations of object categories over time. The extensive evaluation on Pascal3D
and ObjectNet3D shows that our approach outperforms all baselines even in the
in-domain setting and surpasses them by a large margin in the OOD case. We also
introduced the first approach for class-incremental learning of pose estimation.
The results overall demonstrate the fundamental advantage of 3D object-centric
representations, and we hope that this will spur a new line of research in the
community.



iNeMo 15

Acknowledgements

We gratefully acknowledge the stimulating research environment of the GRK
2853/1 “Neuroexplicit Models of Language, Vision, and Action”, funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
project number 471607914. Adam Kortylewski gratefully acknowledges support
for his Emmy Noether Research Group, funded by the German Research Founda-
tion (DFG) under Grant No. 468670075. Alan L. Yuille gratefully acknowledges
the Army Research Laboratory award W911NF2320008 and ONR N00014-21-1-
2812.

References

1. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a
network of experts. In: CVPR. pp. 3366–3375 (2017)

2. Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In:
CVPR. pp. 11254–11263 (2019)

3. Bai, Y., Wang, A., Kortylewski, A., Yuille, A.: Coke: Localized contrastive learning
for robust keypoint detection. Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (2023)

4. Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: Continual learn-
ing with a memory of diverse samples. In: CVPR. pp. 8218–8227 (2021)

5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the International Conference on Computer Vision (ICCV) (2021)

6. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV. pp. 233–248 (2018)

7. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: ECCV. pp.
532–547 (2018)

8. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with A-GEM. In: ICLR (2019)

9. Chen, Z., Liu, B.: Lifelong machine learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning 12(3), 1–207 (2018)

10. De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A.,
Slabaugh, G., Tuytelaars, T.: A continual learning survey: Defying forgetting in
classification tasks. TPAMI 44(7), 3366–3385 (2021)

11. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs
distillation for small-tasks incremental learning. In: ECCV. pp. 86–102 (2020)

12. Goswami, D., Liu, Y., Twardowski, B., van de Weijer, J.: Fecam: Exploiting the het-
erogeneity of class distributions in exemplar-free continual learning. In: Advances
in Neural Information Processing Systems. vol. 36 (2024)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

14. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: ICLR (2019)

15. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781 (2019)



16 T. Fischer et al.

16. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. In: NIPS Workshops (2014)

17. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: CVPR. pp. 831–839 (2019)

18. Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: Fast 6d object
pose refinement via deep texture rendering. In: ICCV. pp. 3303–3312 (2021)

19. Jesslen, A., Zhang, G., Wang, A., Yuille, A., Kortylewski, A.: Robust 3d-
aware object classification via discriminative render-and-compare. arXiv preprint
arXiv:2305.14668 (2023)

20. Joseph, K.J., Khan, S., Khan, F.S., Anwer, R.M., Balasubramanian, V.N.: Energy-
based latent aligner for incremental learning. In: CVPR. pp. 7452–7461 (2022)

21. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. PNAS pp. 3521–3526 (2017)

22. Kortylewski, A., Liu, Q., Wang, A., Sun, Y., Yuille, A.: Compositional convolu-
tional neural networks: A robust and interpretable model for object recognition
under occlusion. IJCV pp. 1–25 (2020)

23. Kouros, G., Shrivastava, S., Picron, C., Nagesh, S., Chakravarty, P., Tuytelaars,
T.: Category-level pose retrieval with contrastive features learnt with occlusion
augmentation. arXiv preprint arXiv:2208.06195 (2022)

24. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical Report TR-2009 (2009)

25. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for
6d pose estimation. In: ECCV. pp. 683–698 (2018)

26. Li, Z., Hoiem, D.: Learning without forgetting. TPAMI 40(12), 2935–2947 (2018)
27. Liu, Y., Li, Y., Schiele, B., Sun, Q.: Online hyperparameter optimization for class-

incremental learning. In: AAAI (2023)
28. Liu, Y., Li, Y., Schiele, B., Sun, Q.: Wakening past concepts without past data:

Class-incremental learning from online placebos. In: WACV. pp. 2226–2235 (2024)
29. Liu, Y., Schiele, B., Sun, Q.: Adaptive aggregation networks for class-incremental

learning. In: CVPR. pp. 2544–2553 (2021)
30. Liu, Y., Schiele, B., Sun, Q.: RMM: reinforced memory management for class-

incremental learning. In: NeurIPS. pp. 3478–3490 (2021)
31. Liu, Y., Su, Y., Liu, A., Schiele, B., Sun, Q.: Mnemonics training: Multi-class

incremental learning without forgetting. In: CVPR. pp. 12245–12254 (2020)
32. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin

transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021)

33. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In:
NIPS. pp. 6467–6476 (2017)

34. Luo, Z., Liu, Y., Schiele, B., Sun, Q.: Class-incremental exemplar compression for
class-incremental learning. In: CVPR. pp. 11371–11380 (2023)

35. Ma, W., Wang, A., Yuille, A.L., Kortylewski, A.: Robust category-level 6d pose
estimation with coarse-to-fine rendering of neural features. In: ECCV. pp. 492–508
(2022)

36. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of Learning and Motivation,
vol. 24, pp. 109–165. Elsevier (1989)

37. McRae, K., Hetherington, P.: Catastrophic interference is eliminated in pre-trained
networks. In: CogSci (1993)



iNeMo 17

38. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S.,
Bethge, M., Brendel, W.: Benchmarking robustness in object detection: Au-
tonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

39. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation
using deep learning and geometry. In: CVPR. pp. 7074–7082 (2017)

40. Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the ter-
minal phase of deep learning training. Proceedings of the National Academy of
Sciences 117(40), 24652–24663 (2020)

41. Petit, G., Popescu, A., Schindler, H., Picard, D., Delezoide, B.: Fetril: Feature
translation for exemplar-free class-incremental learning. In: CVPR (2023)

42. PourKeshavarzi, M., Zhao, G., Sabokrou, M.: Looking back on learned experiences
for class/task incremental learning. In: ICLR (2022)

43. Prabhu, A., Torr, P.H., Dokania, P.K.: GDumb: A simple approach that questions
our progress in continual learning. In: ECCV. pp. 524–540 (2020)

44. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

45. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: Incremental clas-
sifier and representation learning. In: CVPR. pp. 5533–5542 (2017)

46. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115, 211–252 (2015)

47. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NeurIPS. pp. 2990–2999 (2017)

48. Simon, C., Koniusz, P., Harandi, M.: On learning the geodesic path for incremental
learning. In: CVPR. pp. 1591–1600 (2021)

49. Tao, X., Chang, X., Hong, X., Wei, X., Gong, Y.: Topology-preserving class-
incremental learning. In: ECCV. pp. 254–270 (2020)

50. Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: CVPR (June 2015)
51. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

Ł., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)
52. Wang, A., Kortylewski, A., Yuille, A.: NeMo: Neural mesh models of contrastive

features for robust 3d pose estimation. ICLR (2021)
53. Wang, A., Ma, W., Yuille, A., Kortylewski, A.: Neural textured deformable meshes

for robust analysis-by-synthesis. In: WACV. pp. 3108–3117 (2024)
54. Wang, A., Mei, S., Yuille, A.L., Kortylewski, A.: Neural view synthesis and match-

ing for semi-supervised few-shot learning of 3d pose. NeurIPS 34, 7207–7219 (2021)
55. Wang, A., Sun, Y., Kortylewski, A., Yuille, A.L.: Robust object detection under oc-

clusion with context-aware compositionalnets. In: CVPR. pp. 12645–12654 (2020)
56. Wang, A., Wang, P., Sun, J., Kortylewski, A., Yuille, A.: Voge: a differentiable

volume renderer using gaussian ellipsoids for analysis-by-synthesis. In: ICLR (2022)
57. Wang, F.Y., Zhou, D.W., Ye, H.J., Zhan, D.C.: Foster: Feature boosting and com-

pression for class-incremental learning. In: ECCV (2022)
58. Wu, C., Herranz, L., Liu, X., Van De Weijer, J., Raducanu, B., et al.: Memory

replay gans: Learning to generate new categories without forgetting. NeurIPS 31
(2018)

59. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incre-
mental learning. In: CVPR. pp. 374–382 (2019)

60. Xiang, Y., Kim, W., Chen, W., Ji, J., Choy, C., Su, H., Mottaghi, R., Guibas,
L., Savarese, S.: Objectnet3d: A large scale database for 3d object recognition. In:
ECCV (2016)



18 T. Fischer et al.

61. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: A benchmark for 3d object
detection in the wild. In: WACV. pp. 75–82. IEEE (2014)

62. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: A benchmark for 3d object
detection in the wild. In: WACV (2014)

63. Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class
incremental learning. In: CVPR. pp. 3014–3023 (2021)

64. Zhao, B., Yu, S., Ma, W., Yu, M., Mei, S., Wang, A., He, J., Yuille, A., Kortylewski,
A.: Ood-cv: A benchmark for robustness to individual nuisances in real-world out-
of-distribution shifts. In: ECCV (2022)

65. Zhou, D., Wang, F., Ye, H., Zhan, D.: Pycil: a python toolbox for class-incremental
learning. Sci. China Inf. Sci. 66(9) (2023)

66. Zhou, X., Karpur, A., Luo, L., Huang, Q.: Starmap for category-agnostic keypoint
and viewpoint estimation. In: ECCV. pp. 318–334 (2018)


	iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning

