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Abstract

How can we test Al performance? This question seems trivial, but it isn’t. Standard
benchmarks often have problems such as in-distribution and small-size test sets,
oversimplified metrics, unfair comparisons, and short-term outcome pressure. As
a consequence, good performance on standard benchmarks does not guarantee
success in real-world scenarios. To address these problems, we present Touchstone,
a large-scale collaborative segmentation benchmark of 9 types of abdominal organs.
This benchmark is based on 5,195 training CT scans from 76 hospitals around the
world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set
enhances the statistical significance of benchmark results and rigorously evaluates
Al algorithms across out-of-distribution scenarios. We invited 14 inventors of 19
Al algorithms to train their algorithms, while our team, as a third party, indepen-
dently evaluated these algorithms. In addition, we also evaluated pre-existing Al
frameworks—which, differing from algorithms, are more flexible and can support
different algorithms—including MONAI from NVIDIA, nnU-Net from DKFZ, and
numerous other open-source frameworks. We are committed to expanding this
benchmark to encourage more innovation of Al algorithms for the medical domain.
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1 Introduction

The development of Al algorithms has led to enormous progress in medical segmentation, but few
algorithms are reliable enough for clinical use [3, 35, 10]. Most Al algorithms fall short of expert
radiologists, who are much more reliable and consistent when dealing with medical images from
multiple hospitals, varied in different scanners, clinical protocols, patient demographics, or disease
prevalences [68, 46, 33, 89]. Therefore, the question remains: How can we test medical Al in the
diverse scenarios that are encountered by radiologists? Establishing a trustworthy Al benchmark is
important but exceptionally challenging, and seldom achieved in the medical domain. Tougher tests,
like out-of-distribution evaluation on large, varied datasets, are needed.

Standard benchmarks have underlying problems that cause confusion in algorithm comparisons and
delay progress. First, in-distribution test sets. In the medical domain, CT scans in the test set often
share sources, scanners, and populations with the training set. As a result, Al algorithms may perform
well on the test set but generalize poorly to out-of-distribution (OOD) scenarios [21, 7, 8, 46, 33].
For example, Xia et al. [80] found that AI algorithms trained on data from Johns Hopkins Hospital
(Baltimore, USA) lose accuracy in pancreatic tumor detection when evaluated on CT scans from
Heidelberg Medical School (Heidelberg, Germany). Second, small-size test sets. Annotating medical
data is expensive and time-consuming, but training Al requires substantial annotated data [59, 60].
Therefore, most annotated data is used for training, leaving very little assigned for testing. Recent
CT datasets such as TotalSegmentator [77], WORD [52], and MSD [2], offered fewer than 100 CT
scans for testing. Even a single success or failure can skew results, reducing the statistical power and
potentially misleading conclusions. Third, over-simplified metrics. Most standard benchmarks only
compare average performance, failing to identify each Al algorithm’s strengths and weaknesses in
different scenarios. For instance, one algorithm might excel at segmenting small, circular structures
(like the gall bladder) while another performs better on long, tubular ones (such as the aorta). Average
performance across many classes can hide these nuances. Fourth, unfair comparisons. Almost every
paper reports that the newly ‘proposed AI’ outperforms existing ‘alternative Als.” The improvement
becomes more significant if alternative Als are reproduced and evaluated on an unknown training/test
split. There are biases in comparison due to asymmetric efforts made in optimizing the proposed
and alternative Als. Many independent studies have reported these comparison biases over the years
[35, 37] but remain unresolved. There is a need to have more widely adopted benchmarks (e.g.,
challenges) where all Al algorithms are trained by their inventors and evaluated by third parties.
Fifth, short-term outcome pressure. Standard benchmarks are often in short-term and non-recurring,
requiring a final solution within several months. For example, RSNA 2024 Abdominal Trauma
Detection [15] only opened for three months for data access and Al development & evaluation. The
short-term outcome pressure can discourage new classes of Al algorithms that need considerable
time and computational resources for a thorough investigation, as their vanilla versions (e.g., Mamba
[22, 85] in early 2024 and Transformers [16] in early 2021) might not outperform all the alternatives
judged. The benchmark must have long-term commitment and allowance.

To address this Al mismeasurement issue, we present the Touchstone benchmark, an effort towards
the objective of creating a fair, large-scale, and widely-adopted medical Al benchmark. Its scale
is large, featuring a training set of 5,195 publicly available CT scans from 76 hospitals and a test
set of 5,903 CT scans from additional 11 hospitals. Test sets were unknown to the participants of
the benchmark. All 11,098 scans are annotated per voxel for 9 anatomical structures. The training
set annotations were created by collaboration between Al specialists and radiologists followed by
manual revision [60], 5,160 out of 5,903 test scans are proprietary and manually annotated, and the
remaining test datasets are publicly available, annotated by Al-radiologist collaboration. As of May
2024, 14 global teams from eight countries have contributed to our benchmark. These teams are
known for inventing novel Al algorithms for medical segmentation. In summary, the Touchstone
benchmark explores an evaluation philosophy defined by the following five contributions:

1. Evaluating on out-of-distribution data: The JHH test set (Sec. 2.1) presents 5,160 CT scans
from an hospital never seen during training, introducing a new scale of external validation
for abdominal CT benchmarks. The test data distribution varies in contrast enhancement
(pre, venous, arterial, post-phases), disease condition (30% containing abdominal tumors
at varied stages), demographics (age, gender, race), image quality (e.g., slice thickness of
0.5-1.5 mm), and scanner types. We have collected metadata information for 72% of the
test set (N=5,160) and reported Al performance in each sub-group.



2. Providing a large test set: Our test set (N=5,903) is much larger than the test sets of all
current public CT benchmarks combined. It can enhance the statistical significance of
the benchmark results: a 1% average accuracy increment across 5,000 CT scans is more
indicative of a genuine algorithmic improvement than a 1% variation across 50 CT scans.

3. Analyzing pros/cons from multiple perspectives: We evaluated segmentation performance
of 9 anatomical structures, comparing the average results and analyzing them by metadata
groups. We also reported per-class algorithm rankings and visualized worst-case perfor-
mance. Moreover, we assessed inference time and computational cost, key factors for the
clinical deployment of Al algorithms.

4. Inviting inventors to train their own algorithms: Each Al algorithm is configured by its own
inventors, who know it best and have the most interest in its success. In our benchmark,
each inventor trained their Al algorithm on 5,195 annotated CT scans in AbdomenAtlas
[60], and we, as a third party, independently evaluated these algorithms on 5,903 CT scans
that are unknown and inaccessible to the Al inventors. This setting protects the integrity of
our results (i.e., precluding the use of test data for hyperparameter tuning).

5. Evaluating new algorithms with long-term commitment: Our Touchstone benchmark not only
invited established Al algorithms that are already published in major conferences/journals,
but also invited newly developed algorithms appearing in recent pre-prints. We have a
long-term commitment to this benchmark by organizing recurring challenges for at least
five years, curating larger datasets, and improving label quality and task diversity. The first
edition was featured as an invitation-only challenge at ISBI-2024.

Related benchmarks/challenges & our innovations. In a general sense, we define a benchmark
as an algorithmic comparison. Accordingly, the most common type of benchmark are the standard
comparisons found in thousands of research papers [58, 90, 91, 12, 27, 26, 48, 79] where authors
present new algorithms and compare baselines. As previously explained, this type of benchmark
incurs the risk of unfairness, due to possible asymmetric efforts made in optimizing the proposed and
alternative algorithms. However, open challenges are a different type of benchmark, where developers
train their own algorithms and submit them for third-party evaluation, mitigating the risk of unfair
comparisons. For this reason, Table | contrasts our Touchstone benchmark to a non-exhaustive
list of the most influential abdominal CT segmentation challenges. Notably, our training dataset is
considerably larger and comes from more hospitals than any CT dataset ever used in a challenge.
Furthermore, the only challenge training datasets on a scale similar to AbdomenAtlas 1.0 have partial
labels and/or unlabeled portions [2, 53]. Our dataset is 17.3x larger than the second-largest fully-
annotated CT dataset [29] in Table 1. Boosting our results’ statistical significance, our evaluation
dataset is 8.6 x larger than any CT segmentation challenge test dataset. Moreover, Touchstone is the
only benchmark in Table 1 to, simultaneously, explicitly analyze the performance of Al algorithms
controlled by age, sex, race, and other metadata information. Lastly, this work is the starting point of
a long-term benchmark, which we commit to maintain and improve over the years. Considering the
importance of long-term commitment, we must acclaim KiTS, an abdominal segmentation challenge
that had 3 editions since 2019 [31, 30, 28, 29] and FLARE, a challenge being consistently held yearly
since 2021 [57, 53, 55, 56].

2 Touchstone Benchmark

2.1 Datasets — Annotations, Statistics, Distribution, & Characteristics

We used one training dataset and two test datasets to perform a comprehensive out-of-distribution
benchmark. The training and test datasets were collected from many hospitals worldwide. Figure
1 shows the demographics of the two test datasets, JHH and TotalSegmentator; Appendix Figures
3—4 provide examples of CT scans and per-voxel annotations for various demographic groups across
all datasets. The JHH dataset is proprietary and used for third-party evaluation; participants do not
have access to the CT scans or their annotations. TotalSegmentator is a publicly available dataset;
we did not inform the inventors beforehand of its use in our evaluation and confirmed that their Al
algorithms had not been trained on this dataset. We included this public dataset to enable future
participants to easily compare their algorithms with our benchmark.

AbdomenAtlas 1.0—N=5,195; publicly available for training purposes—is the largest multi-organ
fully-annotated CT dataset to date, encompassing 76 hospitals in 8 countries [60]. It leveraged a



Table 1: Related benchmarks & our innovations. We compare Touchstone with influential CT
segmentation benchmarks in light of the five contributions presented in the introduction.

promoting superior OOD performance boosting results’ significance ~ multi-faceted encouraging
contribution with a large and diverse training dataset & large-scale OOD test evaluation innovative Al
#1) #1, #2) #3) (#4, #5)
#CTscans  #hospitals  # countries  # CT scans Al consistency  targeted
benchmark . . . . LS
train train train test analysis invitation
MSD-CT [2] 947F 1 1 465 1ID none no
FLARE’22 [54] 2,050T 22 5+ 200 IID, 600 OOD sex, age no
FLARE’23 [56] 4,000% 30 n/a n/a n/a no
KiTS21 [29] 300 50+ 1 100 OOD SEx, race no
AMOS22-CT [38] 200 3 1 78 11D, 122 OOD none no
LiTS [9] 130 7 5 70 ID none no
BTCV [41] 30 1 1 20 IID none no
CHAOS-CT [72] 20 1 1 20 1ID none no
Touchstone (ours) 5,195 76 8 5,903 OOD sex, age, race yes

TPanially labeled: annotations for each organ do not cover the entire dataset, and/or may contain unlabeled samples.
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Figure 1: Summary of JHH and metadata. The diversity of data distribution

includes more than just the number of centers; it also includes age, sex, manufacturer, diagnosis, and
many other factors. JHH is the only dataset that provides race information, allowing us to compare
the results; the race information is unknown in TotalSegmentator and most publicly available datasets.
Therefore, the inclusion of JHH is value-added because it enabled the analysis on race. Races HL, W,
AS, AA, O, and U indicate Hispanic&Latino, White, Asian, African American, other and unknown,
respectively.

human-in-the-loop active learning strategy to empower radiologists to feasibly annotate 5,195 CT
scans from 16 public datasets (listed in Appendix Table 4) and is fully annotated for 9 anatomical
structures, i.e., spleen, liver, L&R kidneys, stomach, gallbladder, pancreas, aorta, and postcava.
AbdomenAtlas 1.0, under CC BY-NC 4.0 License, is derived from publicly available datasets, so
detailed metadata information is unfortunately not available.

JHH—N =5,160; reserved for out-of-distribution test purposes'—provides contrast-enhanced CT
scans in venous and arterial phases. Collected from Johns Hopkins Hospital using two Siemens
scanners, this dataset includes metadata on age, race, gender, and diagnosis. Notably, all per-voxel
annotations in JHH were manually created by radiologists [59, 80]. Annotation time for a single

'Out-of-distribution (OOD) test data (both images and annotations) must remain private, as public release
can lead to overfitting and compromise OOD evaluation integrity [21, 61]. If any OOD data is released, a new,
privately preserved test set will be required to ensure reliable evaluation.


https://archive.data.jhu.edu/dataset.xhtml?persistentId=doi:10.7281/T1/7ELIJW

structure ranges from minutes to hours, depending on the size and complexity of the regions of
interest to annotate and the local surrounding anatomical structures. Each CT scan was annotated by
a team of radiologists, and confirmed by one of three additional experienced radiologists to ensure
the quality of the annotation. All personally identifiable information was removed and the use of
this dataset has received IRB approval from Johns Hopkins Medicine under IRB00403268. JHH is
considered here an OOD test set because no CT scan from the Johns Hopkins hospital is present in
the training dataset.

TotalSegmentatorV2—N =743; publicly available for out-of-distribution test purposes—is from 10
institutes within the University Hospital Basel (Switzerland) picture archiving and communication
system (PACS) [77]. Being one of the largest public CT datasets, TotalSegmentator, under Apache
License 2.0, was annotated by Al-assisted radiologists. It comprises both contrast-enhanced and
non-contrast images, with per-sample metadata including age, sex, scanner details, diagnosis, and
institution. We report Al performance on a subset of TotalSegmentator dataset” in Table 3 and its
official test set in Appendix Tables 11-12.

2.2 Evaluation Protocols — Architectures, Frameworks, Metrics, & Statistical Analysis

In this study, we define an architecture as the overall design and structure of the entire neural network
model; and define a framework as a set of tools or protocols that can accommodate multiple Al
architectures. We evaluated 19 architectures and 3 frameworks trained by their inventors on our
AbdomenAtlas 1.0°. We used Dice Similarity Coefficient (DSC) and Normalized Surface Distance
(NSD) to evaluate segmentation performance. We enforced that the inference speed must be faster
than 1e® mm3 per second. The inference speed for each algorithm is summarized in Appendix
Table 6. We employed the same computer to evaluate all submitted algorithms. Its specifications are
CPU: AMD EPYC 7713 @ 2,0Ghzx64; GPU: NVIDIA Ampere A100 (80GB); RAM: 2TB. We
applied statistical hypothesis testing to each possible pair of algorithms to ensure their performance
differences are significant. Following Wiesenfarth et al. [78], we used the one-sided Wilcoxon signed
rank test with Holm’s adjustment for multiplicity at 5% significance level and summarized results
in significance maps. Per-group metadata analysis in Appendix D.5 considers Kruskal-Wallis tests,
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. More statistical analyses,
such as ranking stability [78], are presented in Appendix D.2.

3 Benchmark Results

3.1 Performances According to Out-of-distribution Evaluation on Large Datasets

We started by comparing the average DSC score over the 9 classes. MedNeXt and MedFormer are
the winners of the JHH dataset; STU-Net and ResEncL are the winners of the TotalSegmentator
dataset. Among these winners, three are CNNs (STU-Net, ResEncL and MedNeXt) and one is a CNN
Transformer hybrid (MedFormer). There is no significant difference among these winners at p = 0.05
level, evidenced by the statistical analysis in Tables 2—-3. Regarding frameworks, nnU-Net [35] is
the winner since 3 out of 4 of the aforementioned winners were developed on the self-configuring
nnU-Net framework.

In addition to reporting the average performance ranking, we examined the per-class performance and
made the following findings. First, diversified OOD evaluation is necessary. For multiple algorithms,
the DSC score for a given organ varied 15% or more across diverse test sets. E.g., the SAM-Adapter,
a transformer-based 2D model, generalizes much better to JHH than to TotalSegmentator: in kidney
segmentation, its DSC score differs by more than 80% across the datasets (see Appendix D.3.5 for
explanations). Such stark performance variations reveal the importance of evaluating models on
diverse OOD test sets. Second, test dataset size matters. More test samples increase statistical power,
enabling benchmarks to more reliably detect differences between algorithms and produce stable,
trustworthy rankings. Higher statistical power allows us to better differentiate the best performing

2TotalSegmentator offers 1,228 CT scans, but 485 scans were included into FLARE and subsequently
inherited by AbdomenAtlas 1.0. As a result, we used only the remaining 743 scans for evaluation. Unlike JHH,
this evaluation set does not come from completely unseen hospitals. However, there is a significant distribution
shift between the TotalSegmentator data within AbdomenAtlas and the data in our test set (see Appendix A.2).
3 Appendix B.1-B.3 describe in-depth the description and configuration of each architecture/framework.


https://github.com/wasserth/TotalSegmentator/blob/master/LICENSE
https://github.com/wasserth/TotalSegmentator/blob/master/LICENSE

Table 2: External validation on proprietary JHH dataset (N=5,160). Performance is given
as DSC score (mean=s.d.). For each class, we bold the best-performing results and highlight the
runners-up, which show no significant difference from the best results at p = 0.05 level, in red.
Architectures are grouped by their frameworks and sorted in ascending order based on the number of
parameters. CNNss based on the nnU-Net framework have the best performance on most classes, but
other models excel at specific structures (e.g., the graph neural network-based NeXToU for aorta, and
the diffusion-based Diff-UNet for kidneys). The NSD results are reported in Appendix Table 9. We
measured inference speed in cm?/s (see Table 6 for details).

framework architecture param spleen kidneyR kidneyL gallbladder liver
UniSeg‘L [84] 31.0M 94.9£6.0 922472 91.5£7.0 84.7+12.6 96.1+4.4
MedNeXt [65] 61.8M 95.246.3 92.6+7.4 91.8+£7.3 85.3+12.9 96.3+4.5
NexToU [67] 81.9M 94.7+8.1 90.14+9.5 89.6+9.3 82.3+17.0 95.7+5.5
STU-Net-B [34] 58.3M 95.1+6.4 92.54+7.3 91.9+7.2 85.5+12.3 96.24+4.8
nnU-Net STU-Net-L [34] 440.3M 95.2+6.1 92.5+7.1 91.8£7.1 85.7+11.8 96.3+4.4
STU-Net-H [34] 1457.3M 95.2£5.9 92.6+6.9 91.9£7.1 86.0+11.6 96.3+4.4
U-Net [63] 31.1IM 95.1£6.3 92.7+6.9 91.9£7.2 84.7+13.1 96.2+4.5
ResEncL [35, 37] 102.0M 95.246.3 92.6+7.0 91.9£6.9 84.94+13.0 96.3+4.5
Vision-Language U-Net & CLIP [47] 19.1IM 94.3£6.9 91.9+7.8 91.1£8.8 82.1+15.4 96.0+4.3
i Swin UNETR & CLIP [47]  62.2M 94.1£7.7 91.7+9.1 91.0+9.1 80.24+18.3 95.8+5.6
LHU-Net [66] 8.6M 94.9+6.3 92.5+£7.0 91.8+7.4 83.9+14.5 96.2+4.3
UCTransNet [73] 68.0M 90.2+11.9  86.5+14.6 8694128  77.8+£19.5 93.6+6.4
MONAI Swin UNETR [69] 72.8M 92.7+8.8 89.8+11.1  89.74+10.2  76.9420.7 952453
UNesT [86] 87.2M 93.247.1 90.948.1 90.1+8.2 75.1£21.2 95.34+5.0
UNETR [25] 101.8M 91.7+10.1 90.1+£9.4 89.2+9.6 74.7+20.4 95.0+5.3
SegVolJr [18] 181.0M 94.5+6.9 92.547.1 91.8+7.3 79.3+18.8 96.044.7
SAM-Adapter! [23] 11.6M 90.5+8.8 90.417.9 87.3+9.6 4944229 94.145.3
n/a MedFormer [19] 38.5M 95.5+6.1 92.84+7.3 91.9+7.4 85.3+13.6  96.41+4.4
Diff-UNet [82] 434.0M 95.0£6.9 92.8+7.4 91.9+7.5 83.81+14.8 96.2+4.7
framework architecture speed stomach aorta postcava pancreas average
UniSeg' [84] 198 93.3£6.0 82.3+10.3 81.2+8.1 82.7+10.4 88.8+8.0
MedNeXt [65] 308 93.5+6.0 83.1+10.2 81.3+8.3 83.3+11.0  89.248.2
NexToU [67] 654 92.7+7.5 86.4£8.7 78.149.1 80.2£13.5 87.8+9.8
STU-Net-B [34] 418 93.5£6.0 82.1+10.5 81.3£8.2 83.24+10.7 89.0+8.1
nnU-Net STU-Net-L [34] 179 93.7£5.6 81.0+10.9 81.3+8.2 83.44+10.7 89.0+8.0
STU-Net-H [34] 73 93.7+£5.7 81.1+10.9 81.1+8.2 83.4+10.7 89.0+7.9
U-Net [63] 1064 93.3+6.0 82.8+10.2 81.0+8.2 82.3+11.4 88.948.2
ResEncL [35, 37] 794 93.446.0 81.4£11.1 80.548.8 82.9410.8 88.84+8.3
Vision-Language U-Net & CLIP [47] 543 92.4+6.8 77.1£12.7 78.5+£9.6 80.8+11.5 87.1+£9.3
Swin UNETR & CLIP [47] 606 92.2+8.3 78.1+£12.6  76.8+11.0 80.2+12.5  86.7£10.5
LHU-Net [66] 2273 93.0£6.1 79.5+11.2  79.449.3 81.0+11.3 88.0+8.6
UCTransNet [73] 1163 81.9+£12.9 86.518.0 68.1+158  59.0+£21.6  81.1+13.7
MONAI Swin UNETR [69] 2222 90.5+8.6 772£151 7544118  75.6+£145 84.8+11.8
UNesT [86] 2703 90.9£7.3 77.7+16.1  744+11.8  762+12.1  84.9+£10.8
UNETR [25] 2703 88.8+8.4 76.5+£16.4  71.5+12.8  72.34+145  833£11.9
SegVolt [18] 1923 92.5£7.0 80.24+11.3 77.8+£9.7 79.1+12.4 87.1+£9.5
SAM-AdapterT [23] 1639 88.04+9.3 62.8+12.2 48.0+142 502£12.6 734+114
n/a MedFormer [19] 535 93.4+6.4 82.1+11.7  80.7£10.1  83.1£112 89.0+8.7
Diff-UNet [82] 442 93.1£6.5 8124113 80.8+8.9 81.9+11.4 88.5+8.8

T These architectures were pre-trained (Appendix B.3).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta and kidney classes (discussed in §4).

model from the others: for JHH (/N=5,160), there is at most four winners for any class, but for
TotalSegmentator, there is up to eight (Tables 2—-3). Appendix D.4 uses box-plots and significance
heatmaps [78] to confirm these findings, and Appendix D.2 shows ranking order is much more stable
for JHH than for smaller test sets. This finding emphasizes the importance of test dataset size for
accurate and reliable algorithm comparisons. Third, average-based rankings are not enough. Tables
2-3 show that, for the same Al algorithm, DSC scores on difficult-to-segment structures, like the
gallbladder and the pancreas, are usually 10-20% lower than performance on easily identifiable
structures, like the liver and the spleen. Usually, the best models for average DSC are also the best at
individual structures, but per-class results reveal notable exceptions. E.g., in JHH, NexToU, a graph
neural network-based hybrid architecture, excels at aorta segmentation, and Diff-UNet, a diffusion-
based model, excels at kidney segmentation. Accordingly, per-class results reveal hidden strengths of



Table 3: Validation on TotalSegmentator (N=743). Performances given as DSC score (mean=+s.d.).
For each class, we bold the best-performing results and highlight the runners-up, which show no
significant difference from the best results at p = 0.05 level, in red. To ease the direct comparison
with other literature, we also reported the official test set performance in Appendix Tables 11-12. We
measured inference speed in cm?/s (see Table 6 for details).

framework architecture param spleen kidneyR kidneyLl gallbladder liver
UniSeg’ [84] 31.0M 89.4+194  845+23.8  81.9+£279  74.6+274 91.7£16.5
MedNeXt [65] 61.8M 91.6+183 8554248 86.04+23.8 758£285 93.0£15.8
NexToU [67] 81.9M 83.04£29.5 7824327  78.7+£30.8  72.0+£31.2  87.6+23.0
STU-Net-B [34] 58.3M 923+154  87.1+£203  86.84+22.1  78.5425.0 93.0£13.9
nnU-Net STU-Net-L [34] 440.3M 91.6+17.8 88.24+18.6 8634229  78.1+£24.7 942+11.2
STU-Net-H [34] 1457.3M 924+14.6 889+163  86.5+234  77.7£254 94.0£11.4
U-Net [63] 31.IM 91.2+17.8 8844183  87.7420.8  783£255 93.4+£13.8
ResEncL [35, 37] 102.0M 91.8+17.5 88.9+18.0  88.24+20.5 78.0£252 91.7£184
Vision-Language U-Net & CLIP [47] 19.1IM 87.4+23.8  83.6E£25.6  82.7£26.6  73.1£29.1 91.6+14.8
Swin UNETR & CLIP [47]  62.2M 87.14+£224  81.1£29.0 77.0£323  703+£31.0 91.6+16.0
LHU-Net [66] 8.6M 86.0£25.7  81.8£29.3  82.4+£27.0  71.3£322  87.7£229
UCTransNet [73] 68.0M 7641345 7434352  62.0+415  69.6£319  82.6£282
MONAT Swin UNETR [69] 72.8M 66.3+36.4  59.7439.4  585440.2  50.6+40.6  80.2£28.7
UNesT [86] 87.2M 79.5+26.7  73.84324  72.0433.8  50.3+£40.0 87.6£20.9
UNETR [25] 101.8M 60.4+379  479439.6  41.9439.8  40.0£369  78.1£29.9
SegVol' [18] 181.0M 87.1+£23.0  82.8+£23.5  82.64+248  68.1+29.3  89.4+£20.5
SAM-Adapter! [23] 11.6M 53.54+33.4 8.5+11.1 19.9422.1 11.5+17.6 6644355
n/a MedFormer [19] 38.5M 90.7+15.0 8554185  84.0421.5 7414268 92.8+124
Diff-UNet [82] 434.0M 88.3+23.6  81.3£27.9  81.0£284  71.8+£30.0 9244149
framework architecture speed stomach aorta vct pancreas average
UniSeg’ [84] 198 74.0+29.5 6924315 7284259  70.3£309  78.7£259
MedNeXt [65] 308 7724287  71.9430.1 7524235  71.6£314  80.9+£25.0
NexToU [67] 654 69.0+34.7  61.54+33.0 5944327 66.8+£32.0 729+£31.1
STU-Net-B [34] 418 78.6+26.5 7424289  773419.6 7494275  82.5+22.1
nnU-Net STU-Net-L [34] 179 79.7£24.6 7574270 77.6+18.7 752+£27.0 83.04+214
STU-Net-H [34] 73 78.5+25.5 7474281  769+19.0 745£276  82.7£213
U-Net [63] 1064 78.9+263  71.04+284 7644218 7524270 82.3+£222
ResEncL [35, 37] 794 7894253  73.84259 7644202  76.3+25.9  82.7£219
Vision-Language U-Net & CLIP [47] 543 77.7+£26.8  59.0+32.8 6584272  74.6£25.7  77.3£258
Swin UNETR & CLIP [47] 606 71.24+30.7  58.64+345  63.6+274  703£289  74.5£28.0
LHU-Net [66] 2273 71.3+31.8  63.0+34.1  67.54£285  68.6%£32.6  755£293
UCTransNet [73] 1163 61.6+36.1  49.7434.8 4934364  59.0£35.1  64.9+£349
MONAT Swin UNETR [69] 2222 5224352  545437.0 38.1434.7 4234345  55.84£36.3
UNesT [86] 2703 63.9+31.5  547437.0 3894362 50.0+£33.0 63.4+£324
UNETR [25] 2703 42.1432.1  41.0£31.4 4134323 2824292  46.8434.3
SegVol' [18] 1923 71.6£29.9  60.8429.8  63.0+£24.3  66.3+£28.1  74.64+259
SAM-Adapter' [23] 1639 48.4£309  152+£18.6 4.848.1 30.94+21.7  28.8422.1
n/a MedFormer [19] 535 80.4+23.6 70.3+28.0  70.04+24.5 7254279  80.0£22.0
Diff-UNet [82] 442 734+£29.8  61.0£345 60.7+33.3  69.7£29.8  75.5428.0

T These architectures were pre-trained (Appendix B.3).
*The class IVC (inferior vena cava) shares the same meaning as the class postcava in other datasets (e.g., AbdomenAtlas 1.0 and JHH).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta and kidney classes (discussed in §4).

Al algorithms. For a more comprehensive evaluation, Appendix C analyzes performance measured by
NSD scores. Fourth, inviting innovation is important. As in past 3D medical segmentation challenges
[2], CNNs with the nnU-Net framework [35] showed strong performance in our benchmark. However,
by searching for innovative algorithms, sending target invitations to their inventors, and performing
comprehensive evaluations, we could reveal strengths of new and less well known models, such
as vision-language algorithms and Diff-UNet, the first 3D medical image segmentation method
based on diffusion models, and MedFormer, a hybrid architecture that combines convolutional
inductive bias with efficient, scalable bidirectional multi-head attention. Meanwhile, the LHU-Net, a
hybrid architecture combining CNN and transformer attention mechanisms, excels in computational
efficiency: itis 2 to 4 times faster than models with similar accuracy.
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Figure 2: Potential confounders significantly impact AI performance. Boxplots showing the
average DSC score of nine classes and 19 algorithms for diverse demographic groups in two OOD
test sets: and JHH. Whiskers indicate 1.5xIQR (interquartile range). Statistical
significance is indicated by stars: * p < 0.05, x % p < 0.01, %% p < 0.001, **** p < 0.0001. We
perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction.
Greater performance differences are observed in the JHH dataset compared to TotalSegmentator,
likely due to the larger number of CT scans. Differences are apparent across demographic groups
such as age, diagnoses, scanner manufacturer, sex, and medical institutions. Races HL, W, AS, AA, O,
and U indicate Hispanic&Latino, White, Asian, African American, other and unknown, respectively.

3.2 Potential Confounders Significantly Impact AI Performance

We leveraged the metadata available in test datasets to assess A’ performance consistency across
diverse demographic groups. We studied correlation between Al performance and the five types of
metadata: age, sex, and diagnosis are analyzed on all two datasets, race is only analyzed on one
dataset, JHH, since most public test sets lack this information, and manufacturer is only analyzed in
one dataset.

Figure 2 displays per-group DSC for an average Al model, i.e., the average performance across our 19
evaluated algorithms. The statistical analysis further highlights the need for large test datasets: JHH’s



large sample size (IN=>5,160) allows detection of statistically significant DSC differences across all
metadata, but some of these differences (for age and sex) are noticeable but not significant in the
smaller TotalSegmentator dataset. Notably, Al performance reduces for advanced age. Median DSC
starts dropping around the fifties. JHH shows multiple statistically significant performance drops
after this age. The creators of the TotalSegmentator observed that aging caused attenuation in CT
scans [77], which may explain the common descending DSC trend after age 50, despite the fact that
the 60-69 age group is the most populous in most datasets (Figure 1). This trend exists for all tested
Al algorithms (Appendix D.5 displays per-group performances for each algorithm and organ). Sex
only significantly confounds some Al algorithms. The median DSC is significantly smaller for women
in JHH. However, multiple top-performing models show no significant performance difference across
sexes in any dataset (e.g., nnU-Net, STU-Net, and Diff-UNet), showcasing current Al can be robust
to this confounder. We found significant performance differences for diverse races. Al performance
for white patients was significantly superior to the performance for African Americans, showing the
need to increase the presence of this demographic group in public CT scan datasets. Again, many of
the best performing algorithms did not present statistically significant differences for these two races
(Appendix D.5). In all datasets, diagnosis significantly impacted Al performance. Cancer patients
have significantly smaller DSC scores in JHH (p < 0.0001), and trauma patients have median DSC
scores below other groups in TotalSegmentator. Scanner manufacturer changes cause significant
DSC differences (p < 0.05) in TotalSegmentator.

4 Conclusion & Discussion

Conclusion. Are we on the right way for evaluating Al algorithms for medical segmentation? This
paper outlines five properties of an ideal benchmark: (I) diverse data distribution in both training and
test datasets, (II) a large number of test samples, (IIT) varied evaluation perspectives, (IV) equitably
optimized Al algorithms, and (V) a long-term commitment. Touchstone sets itself apart from previous
benchmarks in these criteria, enabling us to share unique insights that often missing in standard
benchmarks. Our findings indicate: (1) Al performance can vary significantly across different datasets,
with per-class differences of 10-20% common, and up to 80% observed (SAM-Adapter in kidney);
thus, out-of-distribution evaluation across multiple datasets is crucial for ensuring AI’s reliability and
clinical adoption. (2) Larger test datasets reveal more significant differences between Al algorithms,
allowing for meaningful rankings and nuanced analyses. (3) Average rankings can obscure AI’s
specific strengths; per-organ and metadata analysis is crucial in highlighting the benefits of innovative
vision-language algorithms and the first diffusion-based 3D medical segmentation model. (4) By
evaluating diverse Al architectures trained by their inventors, we establish a fair reference point for
future development, which Touchstone will continually support with a long-term commitment.

Label Noise in Training Set. There is no perfect ground truth in segmentation datasets (except for
synthetic data [32, 42, 13, 17, 14, 40, 45]), especially in the abdominal region where anatomical
boundaries can be blurry due to disease or age (examples in Appendix A.3). Identifying these bound-
aries is challenging for both human annotators and Al algorithms. Many recent datasets, including
TotalSegmentator [77] and AbdomenAtlas 1.0 [60], use human-in-the-loop strategies, combining
Al-predicted annotations and manual annotations by radiologists, which inevitably contain label
errors. The errors in AbdomenAtlas 1.0 arise from poor CT image quality (e.g., BDMAP_00000339,
BDMAP_00001044, BDMAP_00003725), mistakes in Al predictions but not revised by humans,
and inconsistency in label standards across the public datasets incorporated into AbdomenAtlas 1.0
[43]. With the feedback from our benchmark participants, we can partially detect these label errors,
primarily in the aorta (32.4%), a structure with high annotation standard inconsistency in public data
(e.g.,in BTCV and FLARE) [47, 48], and in the L&R kidneys (2.6%). We revised AbdomenAtlas
1.0 by reducing label errors in the aorta to 5.4% and in the L&R kidneys to 0.6%. A ResEncL trained
on the revised AbdomenAtlas 1.0 showed statistically significant performance gains in the aorta, but
gains for kidneys were small and not always statistically significant (see Tables 2—3). These results
highlight that current AI may be resistant to moderate levels of label noise (2.6%), but not to high
levels (32.4%), as we detail in Appendix E. As future work, an improved label error detector will
be a valuable tool for automatically assessing the quality of publicly available datasets and quickly
improving quality through human annotation based on detected errors.

High-Quality, Proprietary Test Set. Having JHH (/N=5,160) available for third-party evaluation is a
big plus for OOD benchmarks. It was completely annotated by radiologists, manually and following



a well-defined annotation standard, for several years [59]. Thus, it can serve as a gold standard for our
benchmark. The fact that JHH is a private dataset has both problems and benefits. It can significantly
increases feedback time for Al performance evaluation, as it requires additional procedures to submit
the Al to a third party, set it up, and run it on over 5,000 CT scans. If a benchmark takes too much
work to run, it will not gain wide traction. But making test set (either images or annotations) publicly
available can cause more problems—including completely destroying the OOD benchmark. For
example, Medical Segmentation Decathlon (MSD) [2] was a benchmark with publicly accessible test
images and its test annotations were private. Similarly, BTCV [41] released both testing images and
annotations. However, due to the growing need for more annotated data in the medical domain, even
MSD/BTCV test sets have been annotated and integrated into recent public datasets, like FLARE
[53, 54, 56] and AbdomenAtlas [60, 44, 43]. Therefore, any Al models trained or pre-trained on
these public datasets are problematic in the MSD/BTCYV leaderboard. With widespread access to
test data, it becomes challenging to fairly compare models, as some may be overly optimized for the
benchmark rather than for real-world performance. As a result, researchers must continue to seek or
develop new datasets—preferably with images and annotations that have never been disclosed. This
is critical in many fields as well. Yann Lecun—beware of testing on the training set—in response to
the incredible results achieved by GPT. Therefore, our proprietary JHH dataset is a valuable resource
that other researchers can exploit to reduce data leakage risks and improve the reliability of OOD
benchmark results. Our Touchstone Benchmark is still in the initial stage, so we are very careful with
the decision of releasing JHH images/annotations. It must be managed carefully to ensure its benefits
outweigh the risks.

Per-Group Metadata Analysis. Our study underscores the need for detailed metadata for algorithmic
benchmark, which is currently a big limitation in the medical domain. Evidenced by Table 1, only
KiTS & FLARE provided metadata analysis on sex, age, and/or race. Our Touchstone not only
provides more extensive metadata analyses, including diagnosis, but also offers an order of magnitude
more test data (N=5,903) for benchmarking. We have analyzed Al performance by metadata such as
sex, age, and race but realized that a more rigorous analysis could be based on combined criteria (e.g.,
white females aged 30—40). Therefore, in the next round of benchmarking, instead of only providing
average performance per class, we will also offer participants per-case performance along with each
case’s metadata information. This approach will provide a richer understanding of the pros/cons of
Al algorithms and potentially stimulate Al innovation.

Architectural Insights. In Appendix D.3, we have provided architectural comparison of both
the top-ranking and bottom-ranking algorithms. But we find it difficult to extract trustworthy
architectural insights directly from our current benchmark results. For example, Tables 2—3 show that
top performing models in our benchmark are usually CNNs within the nnU-Net framework. However,
it is unclear if this is due to an intrinsic advantage of CNNs over Transformers or just an indication of
nnU-Net’s superior pipeline configuration. Given that Transformers are newer, future frameworks,
designed for them, could potentially enhance their performance. I.e., mature frameworks that extract
the best from both CNNs and transformers should allow fairer architectural comparisons in the future.
Beyond medical imaging, the architectural debate between CNNs and Transformers in computer
vision has been ongoing and remains unresolved [5, 74]. Our benchmark provides ‘predictions-only’
results, which can be heavily influenced by many factors such as preprocessing, data augmentation,
post-processing, and training hyper-parameters [35]. To draw convincing architectural insights,
extensive ablation studies under controlled settings are required. However, conducting ablation
studies for all 19 AT algorithms would be extremely costly for us. We anticipate further insights and
details from the Al inventors’ upcoming technical reports, including extensive ablation studies. We
are also happy to assist the inventors in their ablation studies by providing feedback on the OOD
evaluation results of their algorithm variants.

With the success of the first edition of Touchstone Benchmark, we are actively pursuing multi-center,
OQD datasets, to further enhance the benchmark. This is difficult for many well-known reasons
patient privacy, ethical compliance, data annotation, intellectual property, etc. Rome wasn'’t built
in a day. A multi-center, OOD dataset can never be made without accumulating the contribution
of every single-center dataset. We hope this benchmark initiative at Johns Hopkins University, a
highly regarded institution, could also inspire more institutes to contribute their private datasets for
third-party OOD evaluation.
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A Extensive Datasets in Touchstone

A.1 Construction of AbdomenAtlas 1.0

Table 4: Public datasets composing AbdomenAtlas 1.0 and their details [60]. The naive
aggregation of these public datasets results in a database with partial and incomplete labels, e.g.,
LiTS only had labels for the liver and its tumors, and KiTS only had labels for the kidneys and its
tumors. Conversely, our AbdomenAtlas 1.0 is fully-annotated, offering detailed per-voxel labels
for all 9 organs within each CT scan. We detected and removed duplicated CT scans across public
datasets like LiTS and FLARE’23. Duplicate scans were identified by generating a 3D perceptual
hash [83] for each image in the dataset. By comparing the similarity of these hashes, duplicates were
reliably detected, a finding that was further confirmed through manual inspection of CT scans with
high perceptual hash similarities. After aggregating all datasets and removing duplicates, we obtained
a total of 5,195 fully-annotated CT scans.

Dataset # of #of # of source i # of unique scans
atase organs scans centers countries icense in AbdomenAtlas 1.0
1. Pancreas-CT [64] 1 82 1 UsS CCBY 3.0 42
2. LiTS [9] 1 201 7 DEi:I\RILI']f:A' CCBY-SA 4.0 131
3. KiTS [30] 1 300 50+ us CC BY-NC-SA 4.0 300
DE, NL, CA,
4. AbdomenCT-1K [57] 4 1,112 12 FR.IL, US, CN CC BY-NC-SA 1000
DE, NL, CA,
5. CT-ORG [62] 5 140 8 FR.IL. US CCBY 3.0 140
6. CHAOS [72] 4 40 1 TR CCBY-SA 4.0 20
7-11. MSD CT Tasks [2] 9 947 1 Us CCBY-SA 4.0 945
12. BTCV [41] 12 50 1 Us CCBY 4.0 47
13. AMOS22 [38] 15 500 2 CN CCBY-NC-SA 200
14. WORD [52] 16 150 1 CN GNU GPL 3.0 120
15. FLARE’23 13 4,000 30 - CCBY-NC-ND 4.0 2200
16. AbdomenCT-12organ [54] 12 50 - - CC BY-NC-SA 50

US: United States DE: Germany NL: Netherlands CA: Canada FR: France IL: Israel
CN: China TR: Turkey CH: Switzerland

A.2 Domain Shift in TotalSegmentator

Table 5: Percentage of Missing Classes in the two Partitions of TotalSegmentator. Part of To-
talSegmentator is included in the AbdomenAtlas dataset (N=485), because it is contained in FLARE,
one of the AbdomenAtlas constituents. We leveraged the remaining sample of TotalSegmentator
(N=743) for testing, providing a public test set anyone can easily use to compare segmentation
models to Touchstone results. Unlike for the JHH test set, the hospitals in TotalSegmentator are
present in AbdomenAtlas. However, the part of TotalSementator inside AbdomenAtlas (N=485) and
the 743 test samples are not identically distributed. Table 5 analyzes these two subsets, and shows
that the one inside AbdomenAtlas was carefully selected to focus on the abdominal region, with a
regular Region of Interest: almost all of these 485 images contain the 9 abdominal organs considered
in this Touchstone. Conversely, the 743 TotalSegmentator images in our test set are more challenging,
presenting varying regions of interest, which can extend outside of the abdomen and usually crop out
some of the 9 classes in this benchmark. Therefore, Table 5 demonstrates a substantial distribution
shift between the two TotalSegmentator partitions, making our TotalSegmentator test images (N=743)
out-of-distribution and a challenging test scenario. Interestingly, our results show this scenario was
even more challenging to the Al algorithms than the JHH test set, which contains only images from
an unseen hospital (see Sec. 3).

dataset aorta gallbladder kidneyL kidneyR liver spleen stomach  pancreas  postcava
AbdomenAtlas1.0 0% 3.9% 0.4% 0.4% 0% 0% 0% 0% 0%
TotalSegmentator 17.4% 81.8% 60.3% 63.0% 40.4% 60.3% 35.3% 47.2% 45.1%
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A.3 Dataset Visualization by Metadata Information

CT volume ground truth CT volume ground truth

( 7 ‘I { 3 . 4 A ) e )
\‘;%._/ 8= > 4\,

~
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spleen kidney gall bladder liver stomach aorta postcava(lVC) pancreas

Figure 3: Anatomical boundaries and structures can be indistinct due to disease, as seen in the
JHH dataset. We display CT volumes with patients depicted under unhealthy conditions that are
challenging for most Al algorithms to identify. The CT volumes are from patients in unhealthy
conditions. As shown in the first row on the left side, a kidney cyst is mistakenly annotated as the
gall bladder. This example highlights that in the abdominal region, diseases can obscure anatomical
boundaries and even lead to misidentification of structures.
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CT volume ground truth CT volume ground truth

spleen kidney gall bladder liver stomach aorta postcava(lVC) pancreas

Figure 4: Anatomical boundaries can be blurry due to factors such as patient disease, age,
and CT scan quality in TotalSegmentator. We display CT scans that are challenging for most
Al algorithms to identify. The CT scans in the top three rows are from patients diagnosed with the
tumors specified in the pathology metadata. The remaining images feature patients in their 70s and
80s. As shown in the fourth row on the right side, the boundary of the aorta in a 78-year-old patient is
challenging to identify, not only for AI algorithms but also for human annotators in determining the

ground truth.
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B Extensive Number of AI Algorithms in Touchstone

B.1 Description of AI Architectures
B.1.1 Category CNN

U-Net. The U-Net [63] is a fully-convolutional neural network, based on an encoder-decoder
structure joint by multiple skip-connections. The encoder performs down-sampling operations,
and it is designed to capture high-level semantics and context information. The decoder conducts
up-sampling, and the long-range skip connections allow it to fuse the high-level semantics available
at deep encoder layers, with the precise spatial information extracted from earlier encoder layers. The
U-Net is the most influential architecture in biomedical segmentation; almost one decade after its
release, the model is still the base of multiple novel architectures in this Benchmark.

ResEncL. nnU-Net [35, 37] is a self-configuring segmentation framework. It automatically configures
pre-processing, network architecture, training and post-processing. Auto-configuration is guided by
fixed parameters, interdependent rules that consider dataset properties and computational limitations,
and empirical parameters. nnU-Net’s default model has recently been updated to ResEncL default,
which is based on a U-Net architecture with residual connections in its encoder [37]. The encoder
is computationally expensive while the decoder is as lightweight as possible. For hyper-parameter
configuration the nnU-Net default values are used except for the modality which was declared as
“nonCT”, resulting in z-score intensity normalization. ResEncL serves as a modernized nnU-Net
baseline to compare new methodological innovations against.

MedNeXt. MedNeXt [65] is a fully ConvNeXt-based 3D Encoder-Decoder Network designed
to benefit from the scalability of Transformer-based networks while leveraging the inductive bias
inherent to convolutions. This enables effective training on large datasets while still being beneficial
on small data-scarce settings common to 3D medical image segmentation in the last decade. In the
3-layer residual structure of a MedNeXt block, the first layer computes features using a depthwise
convolutional kernel, and it is followed by an expansion and compression layer, akin to a Swin
Transformer. The architecture primarily benefits from using its MedNeXt blocks in all layers of
the architecture, including up and downsampling blocks. The MedNeXt block enables effective
representation learning in standard layers while allowing the network to maintain semantic richness
in all resampling operations.

STU-Net. STU-Net [34] is a family of scalable and transferable medical image segmentation models
based on the nnU-Net framework and the U-Net architecture. The STU-Net models introduce
innovations such as refined convolutional blocks with residual connections for better scalability
and weight-free interpolation for enhanced transferability. The models are available in different
sizes: STU-Net-S with 14 million parameters, STU-Net-B (with 58.3M), STU-Net-L (440.3M),
and STU-Net-H with 1.4 billion parameters. Improvements in segmentation accuracy stem from
the empirical scaling of network depth and width. The primary goal of STU-Net is to enhance the
scalability and transferability of medical image segmentation algorithms, facilitating their application
across a variety of downstream tasks in transfer learning.

UniSeg. UniSeg [84] is a prompt-driven universal segmentation framework designed for multi-task
medical image segmentation, offering transfer capabilities across various modalities and domains.
Based on the nnU-Net framework, UniSeg has a vision encoder and a fusion module, which together
enable a prompt-driven decoder. A key innovation of UniSeg is its universal learnable prompt that
models complex inter-task relationships. UniSeg integrates task-specific prompts early in the training
process, enhancing the training effectiveness of the entire decoder. The primary goal of UniSeg is
not only to excel in multi-task learning but also to serve as a pre-trained model that improves the
accuracy of downstream segmentation tasks. UniSeg was pre-trained (supervised) on 5 datasets
before fine-tuning on AbdomenAtlas 1.0: MOTS [88, 81], VerSe20 [51], Prostate[49], BraTS21[6],
and AutoPET2022 [20].

B.1.2 Category Transformer

UNETR. UNETR [25] was proposed as a 3D transformer-based segmentation backbone network.
The method leverages the Transformer model and CNN as a hybrid architecture, to capture long-range
dependencies within volumetric medical data. The architecture integrates a Vision Transformer
(ViT) as the encoder to handle the 3D input patches and extract rich feature representations. These
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features are then progressively merged with a convolutional neural network (CNN)-based decoder in
a UNet-like structure.

Swin UNETR. SwinUNETR [69] adapted Swin Transformers to enhance volumetric medical image
segmentation by capturing both local and global features through a hierarchical, window-based self-
attention mechanism, outperforming the original UNETR, and using Swin-transformers for global
context. Additionally, self-supervised pre-training of Swin Transformers on large-scale unlabeled
3D medical images datasets, using techniques like masked autoencoding, can significantly boost the
model’s robustness and performance on downstream tasks. These features enabled leading results in
various 3D medical image analysis applications, especially in CT segmentation tasks.

UNEST. UNEST [86] is an advanced 3D segmentation model designed to leverage the strengths
of the hierarchical vision transformer architecture for handling 3D medical image data. UNEST
also employed a U-shape encoder-decoder structure, where the encoder is based on the 2-stage
nested ViT. This transformer-based encoder extracts hierarchical features from the input CT scan
using self-attention mechanisms, which capture long-range dependencies and spatial relationships
efficiently. The decoder consists of 4-levels of CNN-based blocks that reconstruct the segmentation
map by upsampling the features and incorporating skip connections from the encoder to retain
spatial information. The model’s architecture and training protocol are optimized to provide a robust
and efficient solution for 3D segmentation tasks such as whole body, regional, and whole brain
segmentation.

SegVol. SegVol [18] is based on the SAM architecture [39] and 3D transformers, enabling universal
and interactive volumetric medical image segmentation on over 200 anatomical categories. SegVol
supports spatial-prompt, semantic-prompt, and combined-prompt segmentation, aiming for high-
precision segmentation and semantic disambiguation. SegVol introduced a zoom-out-zoom-in
mechanism to provide users with an easy SAM-like interface on volumetric images, while significantly
reducing computational cost and preserving the segmentation precision. Pseudo labels are used to
relieve the problem of spurious correlation between predictions and data distributions. Prior to
training on AbdomenAtlas, SegVol was pre-trained on 90K unlabeled CT scans from M3D-Cap, and
5,772 labeled CT scans from M3D-Seg [4].

SAM-Adapter. The SAM-Adapter [23] is a 2D segmentation model, unlike the other networks in
this study. Thus, it individually analyzes the 2D slices that compose a CT scan. The model is based
on fine-tuning the MobileSAM [87] encoder and decoder using Adapter layers. The SAM-Adapter
follows the philosophy that model size has limited effect over the accuracy of medical segmentation
algorithms [23].

B.1.3 Hybrid Architectures

LHU-Net. LHU-Net [66] is a compact and efficient U-Net-based architecture created for 3D medical
image segmentation. It utilizes a hierarchical encoder-decoder structure with convolutional layers
followed by hybrid attention mechanisms to capture both local and global features. Key innovations
include the integration of CNN-based spatial attention and Vision Transformer (ViT) attention
mechanisms, such as the OmniFocus attention and self-adaptive contextual fusion modules, which
enhance discriminative feature extraction while keeping the model lightweight. These attention
mechanisms’ objective is to ensure high precision and detail in the segmentation results. The main
aim of LHU-Net is to achieve high segmentation accuracy with minimal computational resources and
parameters, making it a practical and accessible tool for medical imaging tasks.

UCTransNet. UCTransNet [73] is a hybrid architecture, based on U-Net with transformer blocks as
skip connections. It introduces the Channel-wise Cross Fusion Transformer (CCT) to fuse multi-scale
context with cross attention from a channel-wise perspective. CCT captures local cross-channel
interaction for adaptive fusing of multi-scale features with possible scale semantic gap. Additionally,
a channel-wise cross attention (CCA) module is proposed for fusing features from decoder stages
and fused multi-scale features to solve inconsistent semantic levels. Both cross attention modules
are called CTrans and replace the original skip connections in the U-Net. Here, the UCTransNet 2D
components were substituted by their 3D versions, including convolution layers, patch embedding
layers, and patch merging layers. The main goal is to discover an efficient approach for integrating
CNNs and Transformers for medical image segmentation.
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Diff-UNet. Diff-UNet [82] is the first generic 3D medical image segmentation model based on a
denoising diffusion model. It mainly consists of two branches: the boundary prediction branch and
the diffusion denoising branch. The boundary prediction branch is based on the U-Net structure,
while the diffusion denoising branch is based on a denoising U-Net structure with noise input. To
aggregate the low-level and high-level features from both branches for better boundary perception,
Diff-UNet also includes a Multi-granularity Boundary Aggregation (MBA) module. Next, Diff-U-Net
proposes a Monte Carlo Diffusion (MC Diffusion) module to obtain uncertainty maps and guide
segmentation loss to focus on hard-to-segment regions during training. Finally, Diff-UNet devises a
Progressive Uncertainty-driven REfinement (PURE) strategy to obtain a more robust prediction result
during inference, based on the inference steps and uncertainty maps estimated by the MC Diffusion
module.

NexToU. NexToU [67] is a hybrid architecture that follows a hierarchical 3D U-shaped encoder-
decoder structure, based on CNNs and graph neural networks (GNNs). It incorporates a hierarchical,
topology-aware strategy inspired by human cognitive processes, progressively decomposing anatom-
ical semantics from simpler to more complex structures. Concurrently, it also learns containment,
connection, and exclusion relationships among various anatomical classes. To facilitate learning and
speed up training, NexToU employs a semantic tree and a novel hierarchical topological interaction
(HTT) module. Additionally, it enhances spatial topology perception by incorporating Vision GNN
[24] and Swin GNN modules, which adeptly represent topology on both global and local scales.
The primary goal of NexToU’s innovations is to improve segmentation accuracy for homogeneous
multi-class anatomical structures, such as vasculature and skeletons. The HTI module is designed to
be more effective when dealing with a large number of classes.

MedFormer. MedFormer [19] is a hybrid architecture that combines the inductive bias of convo-
lution with the global modeling capabilities of Transformers. A key innovation in the design is the
bidirectional multi-head attention (B-MHA) mechanism, which addresses the quadratic complexity
typically associated with self-attention on long sequences. B-MHA employs a low-rank projection
mechanism to achieve linear complexity attention, making it computationally efficient for both low-
and high-resolution feature maps. Furthermore, B-MHA'’s architecture captures the most salient
features in its hidden state, enhancing model robustness by reducing focus on irrelevant details.
Through this design, MedFormer demonstrates good scalability, efficiency, and generalizability,
performing effectively on both small and large datasets without requiring pre-trained weights.
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B.2 Description of AI Frameworks

B.2.1 nnU-Net

nnU-Net [35] is a framework for automatically configuring Al-based semantic segmentation pipelines.
Given a new segmentation dataset, it will extract relevant metadata from the training cases to
automatically determine its hyperparameters. Despite its first release dating back to 2019 and despite
its use of a standard U-Net [63], it stood the test of time and continues to produce state-of-the-art
results. nnU-Net powerfully demonstrates that carefully configuring and validating segmentation
pipelines across a wide range of segmentation tasks yields a surprisingly potent algorithm. As a
framework for method development, it is widely used and extended by the community to push
the boundaries of semantic segmentation [84, 34, 65, 67, 71, 36]. A recent update to the nnU-Net
presets [37] includes reference implementations for a U-Net with residual connections in the encoder,
optimized for different VRAM budgets.

B.2.2 MONAI

MONAI (Medical Open Network for AI) [11] is an open-source framework designed to support
artificial intelligence in healthcare data. Built on top of PyTorch, MONAI facilitates a comprehensive
suite of tools for configuring, training, inference, and deploying AI models tailored to medical appli-
cations. It includes components for data loading, preprocessing, and augmentation, as well as prebuilt
architectures for common tasks such as segmentation, registration, detection, and classification.
MONALI is designed to be flexible, extensible, and performance-optimized, enabling researchers and
practitioners to accelerate their Al development cycle in the medical domain.

B.2.3 Vision-Language Models

CLIP-Driven Universal Model. The CLIP-Driven Universal Model [47] framework, which is
designed for organ and tumor segmentation, integrates a label taxonomy from various public datasets.
The architecture consists of a text branch and a vision branch. In the text branch, the model generates
CLIP embeddings for each organ and tumor using label prompts, enhancing the anatomical structure
of the feature embedding. These embeddings are concatenated with global image features, termed the
text-based controller, to produce prompt features for segmentation. The vision branch pre-calculates
CT scans to mitigate domain gaps across different datasets. These extracted features are processed
by three sequential convolutional layers, referred to as the text-driven segmentor, which utilize the
parameters generated by the text branch to predict segmentation masks for each class. The decoder
also includes a "one vs. all" approach, using Sigmoid activation for each class to generate individual
predictions, ensuring robust and dynamic segmentation across diverse medical imaging datasets.
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B.3 Implementation and Configuration Details

Tables 6-8 present details on the algorithms we benchmarked, and on their training configurations,
respectively.

Table 6: Details on the AI algorithms and speed.

framework architecture parameters category inference time  inference memory
(s /mm®)T (average)’
UniSeg 31.0M CNN 5.04 3.9GB
MedNeXt 61.8M CNN 3.25 43 GB
anU-Net NexToU 81.9M Hybrid 1.53 1.9GB
STU-Net-B 58.3M CNN 2.39 2.0 GB
STU-Net-L 440.3M CNN 5.6 5.4 GB
STU-Net-H 1457.3M CNN 13.66 12.5GB
U-Net 31.1M CNN 0.94 1.9GB
ResEncL 102.0M CNN 1.26 3.7GB
Vision-Laneuage U-Net & CLIP 19.1M Hybrid 1.84 8.0 GB
SU48¢  SwinUNETR & CLIP  62.2M Hybrid 1.65 7.5GB
LHU-Net 8.6M Hybrid 0.44 0.6 GB
UCTransNet 68.0M Hybrid 0.86 2.8 GB
SwinUNETR 72.8M Hybrid 0.45 4.2 GB
MONAI UNesT 87.2M Hybrid 037 24GB
UNETR 101.8M Hybrid 0.37 24 GB
SegVol 181.0M Transformer 0.52 0.8 GB
SAM-Adapter 11.6M Transformer 0.61 0.5GB
n/a MedFormer 38.5M Hybrid 1.87 2.8GB
Diff-UNet 434.0M Hybrid 2.26 3.9GB

T The time and average GPU memory for inference were measured with an NVIDIA V100 GPU and an Intel Xeon Silver 4210 CPU,
evaluating a CT scan with 259 X259 x 283 voxels and spacing of 1.5 mm/voxel. Measurements consider the entire segmentation pipeline,
from loading the CT scan and the Al algorithm, to saving the inference. We observed that the way each Al algorithm deals with spacing and
re-shapes its input scan plays a major role in their inference speed.

Table 7: Training configuration on AbdomenAtlas 1.0.

architecture pre-trained iterations? hours GPU?* GPU memory hyper-parameter

UniSeg Yes 2M 186 1 xXRTX 3090 8.2GB Self-configuring
MedNeXt No 250K 67 4% A100 17.6 GB Manual trial-and-error
NexToU No 500K 186 1xXRTX 3090 17.2 GB Self-configuring
STU-Net-B No 500K 30 1xA100 8.8 GB Self-configuring

U-Net No 250k 7.5 1xA100 7GB Self-configuring
ResEncL No 250K 28 1xA100 24 GB Self-configuring

U-Net & CLIP No 200K 120 8XRTX 8000 12GB Self-configuring
SwinUNETR & CLIP No 200K 120 4xA100 48 GB Self-configuring
LHU-Net No 250K 40 1xA100 8 GB Pre-defined, from [66, 44]
UCTransNet No 200K 20 2xA100 16 GB Self-configuring
SwinUNETR Yes 250k 24 8§x V100 32 GB Self-configuring

UNesT No 250k 24 8x V100 16 GB Self-configuring

UNETR No 250k 24 8x V100 12 GB Self-configuring

SegVol Yes 18.75K 60 8 A800 50 GB Manual trial-and-error
SAM-Adapter Yes 32.5K 170 1 xXRTX A6000 37 GB Pre-defined, from [23]
MedFormer No 300K 72 16 x V100 27.5 GB Pre-defined, Manual trial-and-error
Diff-UNet No 500K 48 1 xXRTX 4090 16 GB Self-configuring

1 iteration is 1 batch, not a full iteration over all dataset.
¥ GPU: number of GPUs used for training X specific (NVIDIA) GPU.
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Table 8: Additional Training Hyper-parameters.

architecture patch size batch size  optimizer  learning rate loss function WD
UniSeg [48, 160, 224] 2 SGD 0.01, PolyLRScheduler Dice, CE 3.00E-05
MedNeXt [128, 128, 128] 8 AdamW 1.00E-03 Dice, CE 3.00E-05
NexToU [96, 160, 160] 2 SGD 0.01, PolyLRScheduler Dice, CE, HTI ~ 3.00E-05
STU-Net-B [80, 128, 192] 2 SGD 0.01, PolyLRScheduler Dice, CE 3.00E-05
U-Net [64, 160, 192] 2 SGD 0.01, PolyLRScheduler Dice, CE 3.00E-05
ResEncL [96, 192, 288] 2 SGD 0.01, PolyLRScheduler Dice, CE 3.00E-05
U-Net & CLIP [96,96,96] 2 AdamW 1,00E-4, cosineScheduler ~ Dice, BCE 1.00E-05
SwinUNETR & CLIP  [96,96,96] 2 AdamW 1,00E-4, cosineScheduler ~ Dice, BCE 1.00E-05
LHU-Net [96,96,96] 2 SGD 0.01 Dice, CE 1,00E-05
UCTransNet [128,128,128] 4 AdamW 1.00E-04 Dice, CE 1.00E-04
SwinUNETR [96,96,96] 2 AdamW 1.00E-3, cosineScheduler Dice, CE 1.00E-05
UNesT [96,96,96] 2 AdamW 1,00E-3, cosineScheduler ~ Dice, CE 1.00E-05
UNETR [96,96,96] 2 AdamW 1,00E-3, cosineScheduler ~ Dice, CE 1.00E-05
SegVol [4, 16, 16] 64 AdamW 1,00E-04 Dice, BCE 1.00E-05
SAM-Adapter [1, 1024, 1024] 32 AdamW 1.00E-03, warmup Dice, CE 0.1
MedFormer [128,128,128] 32 AdamW 6.00E-4 Dice, CE 5.00E-2
Diff-UNet [128,128,128] 2 SGD 0.01, PolyLRScheduler CE 1.00E-03
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C Extensive Results on Four Test Datasets

C.1 NSD scores on the entire JHH dataset

Table 9: External validation on proprietary JHH dataset (/N=5,160) - NSD. For each class, we
bold the best-performing results and highlight the runners-up, which show no significant difference
(P > 0.05) from the best results, in red. Architectures are grouped by their frameworks and sorted in
ascending order based on the number of parameters. NSD considers a tolerance of 1.5mm.

framework architecture param spleen kidneyR kidneyL gallbladder liver
UniSngr [84] 31.0M 88.84+9.7 79.84+10.5 78.7+9.8 75.64+16.8 79.5+8.9
MedNeXt [65] 61.8M 88.9+10.3 80.04+11.2  78.8+£103 7524175 79.01+9.3
NexToU [67] 81.9M 88.2+11.6  757413.0 75.1£11.7 7224206 76.2+10.3
STU-Net-B [34] 58.3M 88.7£104  80.2411.1  79.3£10.2 75.6%+16.8 78.6+9.4
nnU-Net STU-Net-L [34] 440.3M  89.1+10.1  79.7£11.2  79.0+£10.2  76.1£16.9 79.01+9.3
STU-Net-H [34] 1457.3M  89.1+£10.0  80.1£109  79.2+10.2  76.8£16.6 79.449.3
U-Net [63] 31.1M 88.6£10.5 79.9411.1  79.1£104  73.6+17.9 78.1+9.5
ResEncL [35, 37] 102.0M  89.0+10.3  80.3£11.0  79.1+10.2  74.1£18.1 78.949.5
Vision-Language U-Net & CLIP [47] 19.1M 86.5+£10.8  78.74+10.2  787+£104  71.4%185 77.8+8.9
Swin UNETR & CLIP [47] 62.2M 86.0£114  79.04+11.1  78.1+£10.7  70.2420.4 78.1+9.8
LHU-Net [66] 8.6M 87.1£10.9  79.1+£10.8  78.7+£10.1 73.0£18.1 77.81+9.1
UCTransNet [73] 68.0M 78.7+£16.0  73.3%+155 7334135 66.0+£21.8 71.4+11.6
MONAI Swin UNETR [69] 72.8M 80.5+£134 7374131  74.6+£122 6254206 73.7+9.6
UNesT [86] 87.2M 80.7t124 7264122 7224121  57.8420.1 73.31+9.1
UNETR [25] 101.8M 7844150 7324123 7284125  59.2+214 73.1+£9.6
SegVol' [18] 181.0M  86.7%11.1 80.24+10.5 79.24+9.9 68.54+20.7 77.949.7
SAM—Adapterf [23] 11.6M 7094152  70.0+11.6  66.2+11.8  19.8+11.7 62.31+9.7
n/a MedFormer [19] 38.5M 91.3+9.5 83.04+10.3 80.71+9.7 77.3+17.0 81.24+9.1
Diff-UNet [82] 4340M  88.7£10.7  81.0+£11.0  79.5+104  72.14+18.9 78.249.5
framework architecture param stomach aorta postcava pancreas average
UniSngr [84] 31.0M 7244112 783+13.2 7024108 69.9+11.1  77.0+11.4
MedNeXt [65] 61.8M 71.5+11.8  80.2+129  70.8+11.0 69.3+11.7 77.1%11.8
NexToU [67] 81.9M 70.0+12.7  83.8411.9 6624112 68.6E£14.1 751+£13.0
STU-Net-B [34] 58.3M 70.5£12.1  783+134  70.54£109  69.0+£11.5  76.8+11.8
nnU-Net STU-Net-L [34] 4403M  71.7£12.0 7744138  70.7+£109  69.7£11.5  76.9+11.8
STU-Net-H [34] 1457.3M 7244119  78.0£13.6  70.7+£10.9  69.7£11.5 77.3+11.7
U-Net [63] 31.1IM 70.1£11.8 7944134  702411.0 674+119 763%11.9
ResEncL [35, 37] 102.0M  70.7+11.8 7824141  69.8+11.2 682+115 76.5+12.0
Vision-Language U-Net & CLIP [47] 19.1IM 699+11.5 7444139 68.0+11.0 674+12.0 747+119
Swin UNETR & CLIP [47] 62.2M 70.1£12.0  75.0%13.6  66.2+11.7 66.9+12.7 74.4+12.6
LHU-Net [66] 8.6M 69.3+11.9  755+13.3  68.1+11.3  65.1£11.9 7494119
UCTransNet [73] 68.0M 5144134  82.0+11.5 56.3%16.1  449+18.1  66.4+15.3
MONAI Swin UNETR [69] 72.8M 61.6+11.8  72.14+15.6  60.8+12.6 59.2+13.5 68.7£13.6
UNesT [86] 87.2M 61.6+11.2 71.3+160 60.4+12.1 58.0£11.3  67.6+129
UNETR [25] 101.8M  53.8+11.8  69.2+153 5474124  545+12.8 6544137
SegVolT [18] 181.0M  68.2+11.9  78.0£139 66.7+114  659+123 74.6+124
SAM-Adapter’ [23] 11.6M 48.01+10.5 48.8+8.1 38.249.7 22.446.2 49.64+10.5
n/a MedFormer [19] 38.5M 729+12.2 8284134  71.8+11.8 7144122  79.2+11.7
Diff-UNet [82] 4340M  689+12.0 793£134  702+11.5 6694123  76.1+12.2

T These architectures were pre-trained (Appendix B.3).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta class (discussed in §4).
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C.2 NSD scores on the TotalSegmentator dataset

Table 10: Validation on the TotalSegmentator dataset (N=743) - NSD. For each class, we bold the
best-performing results and highlight the runners-up, which show no significant difference (P > 0.05)
from the best results, in red. Architectures are grouped by their frameworks and sorted in ascending
order based on the number of parameters. NSD considers a tolerance of 1.5mm.

framework architecture param spleen kidneyR kidneyL gallbladder liver
UniSngr [84] 31.0M 87.1£21.6  81.14+24.7 7894273 7324294  83.5£19.9
MedNeXt [65] 61.8M 90.1£20.1  82.4+24.8  82.84242  749+29.1 86.7+18.3
NexToU [67] 81.9M 79.7£30.6  74.1+31.5  74.64£299  704+31.5 7854249
STU-Net-B [34] 58.3M 90.6+17.8 8344215 833423.0 77.5£25.3 85.4+18.8
nnU-Net STU-Net-L [34] 440.3M  90.0+20.0  84.44+20.4  83.0+23.6 76.74£253  87.9+15.3
STU-Net-H [34] 1457.3M  90.6+17.0  85.1+18.5 8294243  76.5+25.6 87.2+16.4
U-Net [63] 31.1IM 89.6+19.4 8444193 8394217 77.5£26.0 86.6+159
ResEncL [35, 37] 102.0M  90.4+19.1 85.6+19.2 85.2+21.1 76.6£26.6  85.1+20.0
Vision-Language U-Net & CLIP [47] 19.1IM 84.3+26.0 79.84254 7894259  71.5429.0 81.9+18.6
) Swin UNETR & CLIP [47] 62.2M 83.2425.6  78.0428.3 7424313  68.84+31.4  82.0+19.7
LHU-Net [66] 8.6M 82.2+28.3 7744289  78.0+273 69.84322  77.9+27.0
UCTransNet [73] 68.0M 7224353  71.1+343  59.6439.7  67.3£32.1  71.34£29.5
MONAI Swin UNETR [69] 72.8M 5894353 5324369  53.14£374  46.3+38.6  65.1427.1
UNesT [86] 87.2M 7174275 69.5430.8  66.7432.6 4574384  75.84+20.8
UNETR [25] 101.8M  48.84+349  40.1£35.0 3554353  32.9+432.1 58.0425.3
SegVolT [18] 181.0M  83.2424.1  77.2423.1 76.6425.1 63.3+£28.8  79.0+21.5
SAM-Adapter™ [23] 11.6M 36.74£25.2 8.849.8 24.3419.7 6.4110.5 40.8426.1
n/a MedFormer [19] 38.5M 86.5+£19.0 79.7420.6  79.2+23.0 71.04+27.4  83.0+£17.2
Diff-UNet [82] 4340M 8544259  76.5427.5 7624283 6894315 84.7+17.5
framework architecture param stomach aorta vCH pancreas average
UniSngr [84] 31.0M 64.0+31.1  67.3+31.9  683426.7 67.8+30.8 74.6427.1
MedNeXt [65] 61.8M 67.1£309 69.5+31.0 70.0424.8 68.6+31.2  76.9426.1
NexToU [67] 81.9M 58.64+34.2  59.54+329  54.0431.3  62.1+£31.6  68.04+31.0
STU-Net-B [34] 58.3M 68.1+30.2  71.8430.0  71.8422.1 72.0£27.3 78.2+24.0
nnU-Net STU-Net-L [34] 4403M  69.2+28.6  74.0+27.5 72.0+21.2 7294269  78.91+23.2
STU-Net-H [34] 1457.3M  68.4+28.8  72.7428.6  71.5+21.2  71.9427.8  78.5+23.2
U-Net [63] 31.1IM 68.64+28.6  68.4+28.5  71.0424.0 72.1+£274  78.0423.4
ResEncL [35, 37] 102.0M  68.7+28.8  71.34£26.6  70.9+222  73.54£26.6 78.6+23.3
Vision-Language U-Net & CLIP [47] 19.1IM 66.7+28.2 5754322  61.64+26.8  70.6+£26.1  72.5426.5
) Swin UNETR & CLIP [47] 62.2M 5894313  56.6+34.0 5894269  66.2+28.8  69.6428.6
LHU-Net [66] 8.6M 60.54+32.5 5924335  62.64+279  654+32.0 70.3430.0
UCTransNet [73] 68.0M 48.14342  48.1£33.8 4524348 5444337  59.7+34.1
MONAI Swin UNETR [69] 72.8M 37.14£29.4  51.2436.1  31.64£30.8  35.1+£304  48.0433.6
UNesT [86] 87.2M 48.84+28.7  51.6£355  34.04+329 4284288  56.31+30.7
UNETR [25] 101.8M  25.3+22.7  36.8428.8 3244273 2124228  36.8429.3
SegVolT [18] 181.0M  58.7428.7  57.6+£28.8  56.14+23.5 59.9426.5 68.0425.6
SAM-Adapter' [23] 11.6M 27.0£19.6  17.1£17.2 5.448.1 21.7£144  209+16.7
n/a MedFormer [19] 38.5M 69.31+26.7 67.9429.2 6554255 69.0+£27.8  74.6424.0
Diff-UNet [82] 4340M  59.8+31.2  57.7434.6 5544334 6554294  70.0+28.8

T These architectures were pre-trained (Appendix B.3).
*The class IVC (inferior vena cava) shares the same meaning as the class postcava in other datasets (e.g., AbdomenAtlas 1.0 and JHH).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta class (discussed in §4).
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C.3 DSC/NSD scores on the official test set of TotalSegmentator

Table 11: Validation on the official test set of TotalSegmentator (N=59) - DSC. TotalSegmentator
provides an official split of training and testing sets. To align with other papers, we hereby also
provide the benchmark results on the test set of TotalSegmentator (N=59). Notably, the average
scores in the official test set are usually higher than the ones in the entire TotalSegmentator dataset.

framework architecture param spleen kidneyR kidneyL gallbladder liver
UniSngr [84] 31.0M 94.71+6.8 86.5£17.8 8824133  78.0£27.8 96.2+2.4
MedNeXt [65] 61.8M 93.54+12.0 83.6+24.8 89.7+14.8  73.1+34.7 96.8+2.3
NexToU [67] 81.9M 90.04£22.8  82.1+26.2  79.4426.4  76.2+32.8 90.8+18.5
STU-Net-B [34] 58.3M 96.51+2.6 86.8+18.3 90.2+9.7 78.4+30.9 96.4+4.9
nnU-Net STU-Net-L [34] 440.3M  96.1+3.4 85.24£22.0 89.4+145  82.0+£24.6 96.8+2.6
STU-Net-H [34] 1457.3M  96.3+3.2 85.7£19.9 92.5+5.6 84.44-22.2 97.2+1.6
U-Net [63] 31.1IM 9494123  88.3+18.1 88.64+123  78.3+29.7 95.74+5.8
ResEncL [35, 37] 102.0M  94.7+12.3 8494235 90.7+11.0 78.44£29.7 95.7+£8.2
Vision-Language U-Net & CLIP [47] 19.1IM 94.6+7.0 8524225 83.1+£240  70.1£33.9 95.31+4.6
) Swin UNETR & CLIP [47] 62.2M 92.54+10.1  76.7+34.6 7344348 7224342 96.2+2.8
LHU-Net [66] 8.6M 9234155 8494214 89.54+10.6 74.8+£33.3  94.2410.0
UCTransNet [73] 68.0M 89.3+194  82.7427.6  59.3+41.7 7034325 92.8+15.9
MONAI Swin UNETR [69] 72.8M 80.8+£28.9  69.94357  57.74£40.2 47.4444.1 89.8+16.5
UNesT [86] 87.2M 90.2+11.3  79.0+£26.7  70.4434.6  49.7+40.2 95.0+3.3
UNETR [25] 101.8M 7444313  60.0£37.1  47.5439.7 40.1+£40.2  84.6423.9
SegVolT [18] 181.0M  91.24+16.7  82.1£21.2 8254219  69.9+30.8 94.84+5.6
SAM-Adapter™ [23] 11.6M 50.4434.1 9.24+10.5 18.0421.2 724123 77.54+21.3
n/a MedFormer [19] 38.5M 95.44+1.7 84.0£22.5 89.249.3 76.54+28.5 96.24+2.7
Diff-UNet [82] 4340M  95.3+6.3 85.0422.9  86.7£16.9  723£345  93.6+159
framework architecture param stomach aorta vCH pancreas average
UniSngr [84] 31.0M 80.8+27.3  82.6419.7 79.5+£20.1 82.14+17.2  85.4+£16.9
MedNeXt [65] 61.8M 87.84+13.3 8494172 8224160 83.9+16.8 86.24+16.9
NexToU [67] 81.9M 82.44258  72.5+27.1  66.4430.2 789+19.2 7994254
STU-Net-B [34] 58.3M 86.1+20.1 8554163  82.1+17.3 84.1+£159 87.3+15.1
nnU-Net STU-Net-L [34] 4403M  88.7+14.2  87.0+11.2 84.51+8.9 83.4+£172 88.1+13.2
STU-Net-H [34] 1457.3M 88.4+142  86.7£11.1 84.049.7 829+175 88.7+11.7
U-Net [63] 31.1IM 85.7421.1  82.6+18.8  79.74204  83.1£16.0 86.3+17.2
ResEncL [35, 37] 102.0M  854+21.1 83.7£17.6  79.0+204  83.4+£16.7 86.2+17.8
Vision-Language U-Net & CLIP [47] 19.1IM 84.0£19.1  70.7+28.7  77.04£20.4  79.8+£21.7  82.2420.2
) Swin UNETR & CLIP [47] 62.2M 7994257 7234277 7294219  77.6+£21.8  79.3423.7
LHU-Net [66] 8.6M 80.54+26.4 7224299  73.64+245  80.0+£21.9  82.5421.5
UCTransNet [73] 68.0M 7444318  61.7+£32.8  63.7432.6  76.0+£18.1  74.54+28.0
MONAI Swin UNETR [69] 72.8M 55.1436.8  69.9+27.5  52.7432.0 57.2432.8  64.54+32.7
UNesT [86] 87.2M 70.4£30.0  65.0+£33.9 5324338 6524257  70.9426.6
UNETR [25] 101.8M  52.6+31.0  50.4430.2 52.7+28.8  45.1£30.8 56.4432.6
SegVolT [18] 181.0M  78.5426.5 744+21.8 6994195 76.0£16.9  79.9420.1
SAM-Adapter' [23] 11.6M 4874329  25.1£233 7.0+8.6 37.7£20.0 31.24205
n/a MedFormer [19] 38.5M 87.8£139 83.9+158 79.6+10.5 81.2+18.5 86.0+13.7
Diff-UNet [82] 4340M  82.0+£25.0 74.4426.8  73.6+£274  79.0£21.4 8244219

T These architectures were pre-trained (Appendix B.3).
*The class IVC (inferior vena cava) shares the same meaning as the class postcava in other datasets (e.g., AbdomenAtlas 1.0 and JHH).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta class (discussed in §4).
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Table 12: Validation on the official test set of TotalSegmentator (/N=59) - NSD. TotalSegmentator
provides an official split of training and testing sets. To align with other papers, we hereby also
provide the benchmark results on the test set of TotalSegmentator (N=59). Notably, the average
scores in the official test set are usually higher than the ones in the entire TotalSegmentator dataset.
NSD considers a tolerance of 1.5mm.

framework architecture param spleen kidneyR kidneyL gallbladder liver
UniSngr [84] 31.0M 89.3+13.2  81.7419.1  83.5+£13.1 7524298 87.4+10.7
MedNeXt [65] 61.8M 89.5+159  79.2425.0 845+17.1 7124359 90.4£9.0
NexToU [67] 81.9M 8434251 7594252  743+247 7334335  80.24+23.9
STU-Net-B [34] 58.3M 91.7+11.4  81.9419.2 8554126 763£30.3 89.1+£12.7
nnU-Net STU-Net-L [34] 4403M  91.1+12.3  80.9422.6 8494150  78.4+28.6 90.8£7.2
STU-Net-H [34] 14573M 90.8£13.0  81.1+£22.0 87.2+12.0 81.0+24.1 91.6+6.4
U-Net [63] 31.1IM 91.5+145 8234207 82.1+17.0 758+304 89.0+9.4
ResEncL [35, 37] 102.0M  90.8+15.0  81.24+23.1  84.9+153  76.7+31.8  89.9+10.6
Vision-Language U-Net & CLIP [47] 19.1IM 874+163  78.64239  77.1£24.6 6894319  85.5+£125
) Swin UNETR & CLIP [47] 62.2M 84.14+20.2 7254342  68.1£329  69.5+358  87.24+10.7
LHU-Net [66] 8.6M 85.1£229  79.14+219  83.1+£163 7294323 83.9+194
UCTransNet [73] 68.0M 8224251  7774£276  558+£39.1  654+328  83.3+18.2
MONAI Swin UNETR [69] 72.8M 71.8429.2  62.8434.7 5124364 4494415 733+£21.0
UNesT [86] 87.2M 7924183  72.1+£26.8  62.8433.0 43.7+£394 82.549.2
UNETR [25] 101.8M  61.0+33.3  49.0434.0 3944348 3324332  62.9425.1
SegVolT [18] 181.0M 8354194 7424210 73.6422.8 62.4+29.6 82.1+12.8
SAM-Adapter' [23] 11.6M 34.61+27.8 9.1£9.8 21.5+19.5 4248.0 44.6+£23.0
n/a MedFormer [19] 38.5M 90.0+10.0 7824225  82.6+15.3  70.3£30.3 87.6+6.5
Diff-UNet [82] 4340M  89.8+14.8 79.8422.8 79.9+17.6 69.0£36.6 86.0+16.8
framework architecture param stomach aorta ve’ pancreas average
UniSngr [84] 31.0M 72.1+£29.9  81.8421.5 7654210 783£17.8 80.6£19.6
MedNeXt [65] 61.8M 7794219 84.0419.0 784£17.6 792£176 81.6£19.9
NexToU [67] 81.9M 7294294 7124283 6224302 7194218  74.0+£269
STU-Net-B [34] 58.3M 76.6+27.4 8374185  785+19.0 793£165  82.5+18.6
nnU-Net STU-Net-L [34] 440.3M  80.0+21.7 86.2+13.6 80.9+12.3 78.7+18.0 83.5+16.8
STU-Net-H [34] 14573M  79.4+£222  86.1+129  81.3+124  78.0+18.2  84.0+15.9
U-Net [63] 31.1IM 76.3+26.7  81.14£20.6  76.7£21.1  783£16.6  81.4£19.7
ResEncL [35, 37] 1020M  76.7+26.2 83.6+18.2  75.6+21.8 78.6£18.1  82.0+£20.0
Vision-Language U-Net & CLIP [47] 19.1IM 73.04£254  70.5+28.6  73.64+21.5 745+21.8  76.6422.9
) Swin UNETR & CLIP [47] 62.2M 69.7+27.8 7144281  69.1£229 7194216  73.7£26.0
LHU-Net [66] 8.6M 7124283  68.7+31.5  69.74249  747+£22.7  76.5+24.5
UCTransNet [73] 68.0M 62.3+34.0 60.0432.7 60.7+31.8  68.8+18.8  68.5+£289
MONAI Swin UNETR [69] 72.8M 41.14£33.5 6594281  44.6+29.6 4874312  56.0+31.7
UNesT [86] 87.2M 56.2+28.8  61.0+329  479+£31.5 5524244  62.3+£27.1
UNETR [25] 101.8M  34.8+264 4484272 4354254  34.64+262  44.84295
SegVolT [18] 181.0M  65.74+244  719+21.8 6484198 66.9+16.0 71.74+209
SAM-Adapter' [23] 11.6M 2544+19.1 2424173 8.6+£9.9 2494141 2194165
n/a MedFormer [19] 38.5M 77.3+£21.7 838+17.9 774+137 76.5+18.8 80.4+17.4
Diff-UNet [82] 4340M 7124299  71.4428.6  69.9+28.8 7274221  76.6+24.2

T These architectures were pre-trained (Appendix B.3).
*The class IVC (inferior vena cava) shares the same meaning as the class postcava in other datasets (e.g., AbdomenAtlas 1.0 and JHH).
* These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta class (discussed in §4).
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D Additional Analysis of Benchmark Results

D.1 Worst-case Analysis

CT volume ground truth MedNeXt STU-Net B

spleen kidney gall bladder liver stomach aorta postcava(lVC) pancreas

Figure 5: Worst case analysis for JHH. This figure displays CT scans that are particularly challenging
for most Al algorithms to identify. To illustrate these difficult cases, we also include visualizations
from the top-performing algorithm, MedNext, and the first runner-up, STU-Net Base.

33



CT volume ground truth nnU-Net ResEncL nnU-Net U-Net

[ o o
spleen kidney gall bladder liver stomach aorta postcava(lVC) pancreas

Figure 6: Worst case analysis for TotalSegmentator. This figure displays CT scans that are
particularly challenging for most Al algorithms to identify. To illustrate these difficult cases, we also
include visualizations from the top-performing algorithm, ResEncL, and the first runner-up, U-Net.
The results show ResEncL does perform better than U-Net in these worst cases.
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D.2 Ranking Stability Analyses
D.2.1 Evaluation Metrics

Every evaluation metric reflects a certain aspect of the results and choosing the right one is important
to emphasize those properties that we care about. In this section, we assess the ranking stability with
respect to different evaluation metrics.

The Dice Similarity Coefficient (DSC) is a widely used metric in medical imaging to measure the
overlap between the prediction and the ground truth. Additionally, Normalized Surface Distance
(NSD) focuses on the segmentation quality between two boundaries.

Due to the existence of NaNs (which represent some organs that are missing in some CT scans),
averaging per-case-per-class values by case first and then by class differs from averaging them by
class first and then by case [75]. Let’s focus on DSC (note that this also applies to other metrics
such as NSD) and denote the first version as DSCC and the second as DSC!. DSC€ allows us to
evaluate model performance on a class-wise scale, emphasizing difficult classes, and it alleviates
the limitation of DSC!, which can be biased towards classes with less NaNs. On the other hand,
DSC! facilitates statistical tests across different cases. Due to these considerations, we use DSCC for
reporting per-class performance and utilize DSC! to conduct statistical tests. In the rest of the paper,
we drop the superscripts for simplicity unless stated otherwise.

Besides the standard DSC, in this section, we also consider a worst-case metric to emphasize difficult
cases [75]. In particular, it only averages over cases whose scores fall below the 10% quantile.

Except accuracy metrics such DSC and NSD, we also study bias metrics. Specifically, we choose
Demographic Parity Difference (DPD) [1, 70], which captures bias across diverse demographic
groups. Originally proposed for classification problems, we extend it to medical segmentation and
define it as the maximum differences in DSC among different sensitive demographic groups.

The results for different metrics are shown in Figures 7-9. We find that models tend to retain a similar
rank across different accuracy metrics, indicating that these models do not overfit to a specific metric.
However, performance on the worst-case DSCC is significantly lower than the DSC€ itself, showing
that a need for improvements in model performance on these hard cases, or indicating the existence
of some label noise in test sets. We visualize some worse-case examples in Appendix D.1. Regarding
the bias metrics, although there are some variations in rankings, we find models with high accuracy
usually have low bias.
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Models tend to retain a similar rank across different metrics.
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D.2.2 Bootstrap Sampling

To evaluate ranking stability, we perform bootstrap sampling as described in [78]. A bootstrap
sample of a dataset with n test cases consists of n test cases randomly drawn from the dataset with
replacement. A total of 1,000 bootstrap samples are drawn, and the results are visualized as blob
plots in Figure 10.

Our findings indicate that datasets with more test cases tend to present fewer variations in ranks. For
example, we find fewer variations in ranks on the entire TotalSegmentator (/N = 743) compared with
the ranks on the TotalSegmentator official test set (IN = 59). On the proprietary JHH dataset (N =
5,160), we observe minimum ranking variations due to its large number of test cases. Additionally,
the ranks are relatively robust for the highest- and lowest-performing models, but they can be more
unstable for models in the middle range.
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STU-Net-H
STU-Net-L.
ResEncL (clean)
SegResNet
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Figure 10: Blob plots for visualizing ranking stability based on 1,000 bootstrap samples. The
area of each blob is proportional to the relative frequency. The median rank for each model is marked
by a black cross. 95% bootstrap intervals (ranging from the 2.5th to the 97.5th percentile of the
bootstrap distribution) are connected by black lines. We observe more stable rankings for larger tests
sets.
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D.2.3 Significance Maps

To further investigate ranking stability, we performed pair-wise comparisons between each possible
pair of algorithms. Comparisons use statistical tests to understand if an algorithm’s scores are
significantly better than the other model’s results. We employed one-sided Wilcoxon signed rank
tests with Holm’s adjustment and 5% significance level.
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Figure 11: DSC significance maps. Each cell represents a pair-wise comparison between two
algorithms, according to DSC score. Yellow colors indicate that the x-axis Al algorithm is significantly
superior to the y-axis algorithm in terms of DSC score (considering all organs). Blue represents no

significant superiority. Comparisons employed one-sided Wilcoxon signed rank tests with Holm’s
adjustment and 5% significance level.
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Figure 12: Continuation of DSC significance maps. Each cell represents a pair-wise comparison
between two algorithms, according to DSC score. Yellow colors indicate that the x-axis Al algorithm
is significantly superior to the y-axis algorithm in terms of DSC score (considering all organs). Blue
represents no significant superiority. Comparisons employed one-sided Wilcoxon signed rank tests
with Holm’s adjustment and 5% significance level.
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Figure 13: NSD significance maps. Each cell represents a pair-wise comparison between two
algorithms, according to NSD. Yellow colors indicate that the x-axis Al algorithm is significantly
superior to the y-axis algorithm in terms of NSD score (considering all organs). Blue represents no
significant superiority. Comparisons employed one-sided Wilcoxon signed rank tests with Holm’s

ol dsrhas
Q =9 [
B iy
i oLzLg
g Bn>555T
Qo 5 £ 3
=5 z 2 =
2z > 3
=]

2

H

2
TotalSegmentator - liver

SegVol -
UNEST -
SwinUNETR -
UNETR -
SAM-Adapter -

NexToU -
U-Net & CLIP -
MedFormer -
UCTransNet -

SWinUNETR & CLIP -

nnU-Net ResEncL -
NexToU -,

SJaza g om o
oSl g, 2
£52025000 a
S0SaEIZER 3]
229, 25>>08

CSXEOE E hs
5 L0900 E
zz2 3
22

c 3

SAM-Adapter
Ul‘EST
UCTransNet
SwinUNETR

N lexToU
SwinUNETR & CLIP
UmSeg

LHU-Net

U-Net & CLIP
MedNeXt
STU-Net L
SegVol

nnU-Net ResEncL.
STU-Net H
nnU-Net U-Net
STU-Net B
Diff-UNet

STU-Net B -
STU-Net L -

UniSeg -

LHU-Net -
WIinUNETR & CLIP -
U-Net & CLIP -

[
JHH - kidneyL

NexToU -
UCTransNet -

SwinUNETR -

UNETR -
UNEST -

SAM-Adapter -

MedFormer -,

MedFormer

3
TotalSegmentator Official Test Set - gallbladder

SAM-Adapter
UNEST

_ UNETR
SwinUNETR
UCTransNet

) Se%VoI
SwinUNETR & CLIP
U-Net & CLIP
iff-UNet

HU-Net
nnU-Net U-_Il_\let

NexToU
nnU-Net ResenclL
MedNeXt

U-Net & CLIP -

8

UniSe

WIinUNETR & CLI

STU-Net H -
LHU-Net -

nnU-Net U-Net - ||
nnU-Net ResEncL -

@
JHH - gallbladder

D

9
Chi=|
bESS
zeg
=5
L=}

r

ol
£z
g
228
<
=
<
w

STU-Net H

MedFormer -,

MedFormer
STU-Net H -

v
TotalSegmentator Official Test Set - liver

SAM-Adapter
) INETR
SwinUNETR
UNEST
Se%VoI
U-Net & CLIP
MedFormer
NexToU
. Diff-UNet -
SwinUNETR & CLIP -

-Net H -
nnU-Net ResEncL -
STU-Net B -

MedNexXt -,

MedNeXt
STU-Net B -

nnU-Net ResEncL -
STU-Net H -
nnU-Net U-Net -
STU-Net L -

LHU-Net -

sons .
iges g
FLO: a
=1
== o
559 2
g E° :
&
= g
2
£
2
:

SAM-Ad?&ter
UNEST
UCTransNet
SwinUNETR

X
U-Net & CLIP
LHU-Net
SegVol
_nnU-Net U-Net
SWinUNETR & CLIP
Diff-UNet
STU-Net B
nnU-Net ResEncL
MedNeXt

STU-Net L |

UniSeg -

STU-Net
nnU-Net ResEncL -

nnU-Net U-Net -/
SWIinUNETR & CLIP -

JHH - liver

Seg!

"
9
2|
B!
=
e
=
,
=)

o
=
{m
Z
=
£

3
[

£
wwa
255
h
=
4
H

MedFormer -,

MedFormer
STU-Net H -]

adjustment and 5% significance level. NSD considers a threshold of 1.5mm.

43

UniSe

STU-Net
nnU-Net ResEncL -
STU

SWInUNETR & CLIP -,
nnU-Net U-Net -

Se:

LHU

SwinUNETR -

UNETR -

UCTransNet -

UNEST -

SAM-Adapter -




TotalSegmentator - stomach TotalSegmentator Official Test Set - stomach JHH - stomach

UNETR /| SAM-Adapter 4 SAM-Adapter
SAM;Adﬁggrer ] . 74| UCTransNet
SwinU R [ SwinUNETR (5 ) UNETR
UNEST _ UNEST
UCI'rgnsI{llet (RN ueT egN ot 4 SwmgNE\‘II'RI
egVol ransNel egV/ol
SWIinUNETR & %LIP SWIinUNETR & CLIP DiffAl?Net
Diff-UNet U-Net & CLIP - LHU-Net
NexToU LHU-Net - U-Net & CLIP
LHU-Net UniSeg NexToU
U-Net & CLIP - MedFormer - _nnU-Net U-Net
UniSe: lexToU -. SwinUNETR & CLIP
STU-Net H-_ | nnU-Net ResEnclL - TU-Net B
MedFormer MedNeXt - nnU-Net ResEncL
nnU-Net Resi Diff-UNet - MedNeXt
STU-Net nnU-Net U-Net - STU-Net L
MedNe; STU-Net L - UniSe:
nnU-Net U RN STU-NetH-_ AT L LT ) STU-Net [T errrd [ L
STU-Net AN STU-Net B - /RIEE R . MedFormer -/ IR RTINS 0
o Qs I EEs IS Eosaa = ST ouJmasoas e
g S B58228 2R E8200 2 253852502002 =2
% ILZZ 82 Z2Z52240 x50 S 5225 UZ 5D 52 2s
i1 BN goSTS Oy Lo PUOS5TB3 31 =555 Y@ 0w 5o
2 = 0T EQ D502 E 0 UZu DT < L5220 95 w2 T Sz
F £3 FER262"3 ~5g i BE GECEE2Tg- F2
5 L O 2= hnnzTTy 2 Z2h = 26 vTguEE 2 o=
2 g3 a3 2 2= 3% F 53 35
= 2 s 2 2 3 2¢
= £ = £ c £
€ = < H € 3
[ 7 [
TotalSegmentator - aorta TotalSegmentator Official Test Set - aorta JHH - aorta
SAMATRE SAMASRE SAMATREE
UCTransNet 1 UCTransNet || — _ UNEST —
SwinUNETR [EEE _ UNEST SwinUNETR 5 )
Se'\?EVoI SwinUNETR U-Net & CLIP
UNEST SegVol N LHU-Net
U-Net & CLIP U-Net & CLIP SwinUNETR & CLIP
SwinUNETR & CLIP Diff-UNet STU-Net L
Diff-UNet N lexTol SegVol
NexToU SwinUNETR & CLIP STU-Net H
LHU-Net LHU-Net nnU-Net ResEncL
MedFormer nnU-Net U-Net - STU-Net B
nnU-Net U-Net STU-Net H - UnlSe%
et eadeg NGt L U NS GNet
ni - 1 iff-UNe
MedNeX? nnU-Net ResEncL - ed|
STU-Net H MedFormer - UCTransNet |
STU-Net L I UniSeg - MedFormer - I
STU-Net B ~/ It sty MedNeXxt - IRl iy NexToU -/ I
o-UIgodg gD ecsagcy Lopd-oIgsedyesaEpay DyEREEIudIsagectay
R b S o] $8eepTrEn3etorntEy BEEgEsETITe SEtELEy
2222 2uI ESRS00ZTEU S ZELW=2230ONSODE UG % EUuzSTE2ulozOI0Z22 5
2255025282 020583553 584323229 25wR555538 95 5TE 5282 RTwRwS553
oPo50-°02gstzE LT ELET o oo gt zEL"ET < ZELOES=2505D  TLoET -
EREE 297 0F8 Sk < = PILEEZ2E"00 $ | < wbzoz ESE BE"os I
hoe= =2 52 3G = oghhns £ 2 2 6 = 2 : hgh 0 2E =
2= 5 853 =£s 2 38353 3 27885 3
oS¢ 2 ) €2 s 2 2
T £ z £ z £
< a < a s &
TotalSegmentator - IVC TotalSegmentator Official Test Set - IVC JHH - IVC
SAM-Adapter SAM-Adapter SAM-Ad?rter
SwinUNETR SwinUNETR ) UNEST ()
I / UNETR [
UNETR (| UNEST 11 UCTransNet
UCTransNet UCTransNet SwinUNETR
) e% ol SegVol ) exTol
SwinUNETR & CLIP N NexToU SwinUNETR & CLIP
NexToU SwinUNETR & CLIP Se%VoI
Diff-UNet LHU-Net U-Net & CLIP
U-Net & CLIP MedFormer - LHU-Net
-Ne nnU-Net ResEncL - nnU-Net ResEncL
MedFormer T rrrrrrrrerd U-Net & CLIP N 72 A I nnU-Net U-Net LTI TT] I
STU-Net H - MedNeXt - _UmSe%
nnU-Net ResEncL - STU-Net H- Diff-UNef
STU-Net B - UniSeg - STU-Net B
STU-Net L - STU-Net L - STU-Net H
MUrmSe U bl])l{fdj“egf STU-Net L
edNeXt - nnU-Net U-Net -
nnU-Net U-Net - iyl ey STU-Net B-/LL L LI DR LT L MedFormer -/ Tl laslsipliplelaelsuipiplaely
sig oorasaeoELEy gy gTLeusseaTI ey sgoTesgsogeoearsEy s
F N CT ST ETOSLOopuLLSE TZ52v G205 EFOL oaLuLT £20503NZ 500 LFLLD
BDZEZ2UZ 5025, 02228 Z322c=zZ W55 xPLZ22 6 6522220 VD V552 CZZES
2B53Z YT 0RIE 03H 55550 T OE25TTe PSRRI IR 55550 ST TLS29RIBW IS 555T
52 20808 L E=z V7721 DHEDDS LT 200022 E2Po0E g5 w2207 <
2= BETEg o0 5 3= F208F F=0TgE 5 3= 9=LFED 2575 £ 35 .
0 wnwgng =z- L 2= wETwv wzgl § 2= Vnn 5 z o 2 =
) 2= = 5 &g > 3= 5 &g = 32 5 (=T
z z > 2 @ 2 o 2 @ ¥ 2 2 @
= > 2 c > 2 =) 2
= c c
2 £ T 5 g =
@ & @
TotalSegmentator - pancreas TotalSegmentator Official Test Set - pancreas JHH - pancreas
U] /| SAM-Ad?.E_trer 4 SAM-Adapter
SAM-Adapter ] . UNETR /i UCTransNet
Sl | el hest
UCTransNet | SegVol SwinUNETR =
el Ve
exTol iff-UNet - egV/ol
Diff-UNet SwinUNETR & CLIP Diff-UNet
SWIinUNETR & CLIP MedFormer - SWinUNETR & CLIP
MedFormer UniSeg - nnU-Net U-Net
LHU-Net U-Net & CLIP
U-Net & CLIP nnU-Net ResEncL
UniSe: STU-Net B
MedNe MedNeXt
nnU-Net U-Net - STU-Net L
-Net B - NexToU
STU-%Ettli‘. 1 STUl]N'ESt H
-Net L - niSe
nnU-Net ResEncL -/ T nnU-Net ResEncL -/ . Met!Fcirmegr—I ST T T T T T T T T,
o oo B rabSEEa bx o s soTrodzmJiorasgEaa s
R L R 2 g RO P o et o dmima: 4]
w2232 E05 500k 52 ui 5y SE2%222u0S0SOR2220E
G533 SBT L 2N Eo22S 4] 2 53258383 BEnTSS5552
epPPR e uI552 27 e 3 < ol T e T
CGRGhzE 273E0 5 i3 ot - 8§ GERhiEzEs 3 5
nhnZzT Zz 2f O 2= = n wgzZh 3 0=
2 > 3 =% > 0g 2 < = 23I5% [Z— 4
z c 2 3 @ : @ =1 o
> < 2 2 2 2
H H H H g 3
TotalSegmentator - average TotalSegmentator Official Test Set - average JHH - average
SAM-AgaEte'{ SAM-ASaEte'{ SAM-Aﬂ?&tg_Ir_
SwinUNETR (| SwinUNETR — UNETR —
UCTransNet UCTransNet 5 )
_UNEST UCTransNet . SWIinUNETR
DHFU‘II_\I%: D.foe l‘\l/otl SwinUNETR & C\%IP
exTol iff-UNel egVol
N SE%VDI SWinUNETR & CLIP U-Net & %LIP
SwinUNETR & CLIP NexToU LHU-Net
U-Net & CLIP LHU-Net NexToU
LHU-Net U-Net & CLIP Diff-UNet
nnU-Net U-Net MedFormer - nnU-Net U-Net
MedFormer Mo 1 nnU-Net, Rei‘Er{cIB_
edNeXt - -Ne
edNe; nnU-Net U-Net STU-Net L
nnU-Net ResEnclL - TU-Net B - UniSe:
STU-Net B - nnU-Net ResEncl - MedNe I
STU-Net H STU-Net H-_ L/ STU-Net H Il
STU-Net L T, T STU-Net L7111 FE LT : MedFormer | [ 1/ 1,1, TOETT,
oz seaa oy OTdogzosasoa 5 ST odmJy Qoo
o L i} 2nne 532225885205 2 25352 SohoEns
299 <00 Suwa 2252522 E0SHO: a £0Z2395% Touguse
=23 2253 £358 T2 922555523y -] SZTEZZpD, 323355558
=} =T 8222 D505 9OL T T > Z [y i P N2 5OOT
22 g s < PRxPo2 555%x < SRS RPxY; cEET
[ain =" 2= Gs = Bhohz= 887 E = 5= Ghsz 536 =
> 34 36 g7 =3 4 3 = g5 L3 3
g2 2 E 2 28 2
H < = c H
[ 3 [

Figure 14: Continuation of NSD significance maps. Each cell represents a pair-wise comparison
between two algorithms, according to NSD. Yellow colors indicate that the x-axis Al algorithm is
significantly superior to the y-axis algorithm in terms of NSD score (considering all organs). Blue
represents no significant superiority. Comparisons employed one-sided Wilcoxon signed rank tests
with Holm’s adjustment and 5% significance level. NSD considers a threshold of 1.5mm.
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D.3 Per-Algorithm Analysis
D.3.1 MedNeXt

The central theme of the ConvNeXt [50] architecture was decoupling the scalability of the Transformer
architecture and using it in a convolutional fashion, without self-attention. Scalability becomes
relevant for medical images when creating large 3D networks while not overfitting. MedNeXt [65]
builds upon this principle by using these blocks across the network, leading to the performance seen
in this work.

D.3.2 STU-Net

The STU-Net [34] is built upon the nnU-Net framework, which was proven effective in our experi-
ments. Additionally, STU-Net is based on scaling the AI model size, which may be exceptionally
useful for dealing with large-scale datasets like AbdomenAtlas 1.0. The combination of a high-
performance framework and an appropriately scaled model may be the key for STU-Net’s high
segmentation accuracy in this study.

D.3.3 NexToU

NexToU [67] is a hybrid architecture that combines a hierarchical 3D U-shaped encoder-decoder
structure with both Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNSs).
This innovative approach employs a hierarchical, topology-aware strategy inspired by human cognitive
processes, allowing the model to progressively decompose anatomical semantics from simpler to more
complex structures. On the JHH dataset, NexToU’s results were relatively close to the best-performing
models. However, we observed a significant performance difference on the TotalSegmentator dataset.
This discrepancy is likely due to our model not utilizing a resampling step to the average spatial
resolution during inference for data with fewer slices along the z-axis. While this approach saves
inference time, it compromises performance on data with low z-axis resolution. Additionally, to
further reduce inference time, Test Time Augmentation (TTA) was minimized, leading to a decline in
performance for bilaterally symmetric classes like kidneyR and kidneyL, as well as for some small
sample classes.

D.3.4 DiffU-Net

We hypothesize that two main factors contributed to Diff-UNet’s [82] high segmentation accuracy: its
nnU-Net-inspired hyper-parameter selection procedure and the use of stable diffusion. The diffusion
model excels in handling details, generating high-resolution images when used as a generative model.
During inference, the model predicts multiple times using the DDIM sampling strategy, further
enhancing Diff-UNet’s outputs. Moreover, considering that the diffusion model includes noised
information, DiffU-Net has a boundary branch, which takes the 3D medical image as input. This
branch supplies clear image information to complement the diffusion branch, further improving
segmentation accuracy.

D.3.5 SAM-Adapter

We observed a lower performance for the fine-tuned Segment Anything model, which we hypothesize
may be due to the following reasons:

* The SAM-based model is a 2D-based model that performs multi-class segmentation solely
on 2D slices. This approach relies mainly on 2D information, such as location relations,
rather than 3D organ shape information. When tested on out-of-distribution (OOD) sets,
images from different hospitals may introduce spatial variations and voxel spacing, leading
to varying spatial distributions of abdomen regions compared to the training images. These
spatial changes can cause the 2D-based model to lose its segmentation accuracy.

* During the training of this fine-tuned model, no spatial transformations for augmenta-
tion were used, which might have been used in other comparison methods. This lack of
augmentation could lead to poorer generalization on spatial changes in OOD data.

Possibly, the use of spatial transformations during training and inference could improve the SAM-
Adapter results.
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D.4 Per-Class Analysis
D4.1 JHH
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Figure 15: Boxplots showing DSC score in JHH, per class. Performances are not homogeneous
across classes: structures like the liver, which are easier to segment, show higher median scores and
smaller score variation, when compared to more difficult structures, like the gallbladder.
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Figure 16: Boxplots showing NSD score in JHH, per class. Performances are not homogeneous
across classes: structures like the liver, which are easier to segment, show higher median scores
and smaller score variation, when compared to more difficult structures, like the gallbladder. NSD
considers a threshold of 1.5mm.
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D.4.2 TotalSegmentator
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Figure 17: Boxplots showing DSC score in the entire TotalSegmentator dataset, per class.
Performances are not homogeneous across classes: structures like the liver, which are easier to
segment, show higher median scores and smaller score variation, when compared to more difficult

structures, like the gallbladder.
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Figure 18: Boxplots showing NSD score in the entire TotalSegmentator dataset, per class.
Performances are not homogeneous across classes: structures like the liver, which are easier to
segment, show higher median scores and smaller score variation, when compared to more difficult
structures, like the gallbladder. NSD considers a threshold of 1.5mm.



D.4.3 TotalSegmentator Official Test Set
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Figure 19: Boxplots showing DSC score in the TotalSegmentator official test dataset, per class.
Performances are not homogeneous across classes: structures like the liver, which are easier to
segment, show higher median scores and smaller score variation, when compared to more difficult
structures, like the gallbladder.
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Figure 20: Boxplots showing NSD score in the TotalSegmentator official test dataset, per class.
Performances are not homogeneous across classes: structures like the liver, which are easier to
segment, show higher median scores and smaller score variation, when compared to more difficult
structures, like the gallbladder. NSD considers a threshold of 1.5mm.



D.5 Per-Group Metadata Analysis
D.5.1 Age

mean DSC by ages in JHH
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Figure 21: Boxplot showing average DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms. Significant (at least p<0.05) reductions in
DSC score for groups with advanced age are observed for all Al algorithms.
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Figure 22: Boxplot showing average DSC score by age in the whole TotalSegmentator dataset.
Statistical significance is indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < (0.0001.
We perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests with Bonferroni cor-
rection. Here, we did not perform statistical comparisons between diverse Al algorithms. Significant
differences are not observed, possibly due to the higher variability in the TotalSegmentator results,
when compared to other datasets.
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Figure 23: Boxplot showing average DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 24: Boxplot showing average DSC score by diagnosis in the whole TotalSegmentator
dataset. Statistical significance is indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001,
##%% p < 0.0001. We perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests
with Bonferroni correction. Here, we did not perform statistical comparisons between diverse Al

algorithms.



D.5.3

Al Algorithm-Group

Figure 25: Boxplot showing average DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms. Only the worst performing algorithms show
significant performance difference for the male and female groups, with better scores for male. The
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Figure 26: Boxplot showing average DSC score by sex in the whole TotalSegmentator dataset.
Statistical significance is indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001.
We perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests with Bonferroni
correction. Here, we did not perform statistical comparisons between diverse Al algorithms. Only
the worst performing algorithms show significant performance difference for the male and female
groups, with better scores for male. The best performing models show no significant difference.
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Figure 27: Boxplot showing average DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms. Only some algorithms show significant per-
formance differences across race groups. In these cases, the white or Asian groups have significantly
better results than African American or Hispanic Latino (usually than African American). Possibly,
this finding indicates a predominance of white and Asian people in the training data, and the necessity
of increasing the proportion of African Americans and Hispanic Latinos in the training dataset.
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Figure 28: Boxplot showing average DSC score by manufacturer in the whole TotalSegmentator
dataset. Statistical significance is indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001,
*#*%% p < 0.0001. We perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests
with Bonferroni correction. Here, we did not perform statistical comparisons between diverse Al

algorithms.
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Figure 29: Boxplot showing average DSC score by institute in the whole TotalSegmentator
dataset. Statistical significance is indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001,
##%% p < 0.0001. We perform Kruskal-Wallis tests followed by post-hoc Mann-Whitney U Tests
with Bonferroni correction. Here, we did not perform statistical comparisons between diverse Al
algorithms. Significant differences across institutes are observed for most Al algorithms, even though
all institutes are located on the same country (Switzerland). This finding shows the difficulty of OOD
generalization.



D.5.7 Age: per-class analysis in JHH
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Figure 30: Boxplot showing spleen DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 31: Boxplot showing right kidney DSC score by age in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 32: Boxplot showing left kidney DSC score by age in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 33: Boxplot showing gall bladder DSC score by age in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 34: Boxplot showing liver DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 35: Boxplot showing stomach DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 36: Boxplot showing aorta DSC score by age in JHH. Statistical significance is indicated by
stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We observed that mean Al performance
drops with advanced age, but some Al algorithm’s show improving DSC score for aorta after 70.
Possibly, an explanation is that the ascending aorta and aortic arch can increase in diameter with
age (due to hypertension), and the walls of the vessel will gradually show obvious calcification,
possibly making the boundaries clearer. We perform Kruskal-Wallis tests followed by post-hoc
Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform statistical comparisons
between diverse Al algorithms.
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Figure 37: Boxplot showing postcava DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 38: Boxplot showing pancreas DSC score by age in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.



D.5.8 Diagnosis: per-class analysis
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Figure 39: Boxplot showing spleen DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.

72



Al Algorithm-Group

kidney right DSC by di is in JHH

MedNeXt-negative

MedNeXt-cancer -

STU-Net B-negative

STU-Net B-cancer{--

STU-Net L-negative

STU-Net L-cancer -

STU-Net H-negative

STU-Net H-cancer |~

nnU-Net ResEncL-negative

nnU-Net ResEncL-cancer--

MedFormer-negative {-

MedFormer-cancert--

nnU-Net U-Net-negative

nnU-Net U-Net-cancer- -

UniSeg-negative

UniSeg-cancert--

Diff-UNet-negative {

Diff-UNet-cancer -

NexToU-negative

NexToU-cancer{ -

SegVol-negative

SegVol-cancer{- -

U-Net & CLIP-negative

U-Net & CLIP-cancer{ -

SWIinUNETR & CLIP-negative

SwinUNETR & CLIP-cancer -

LHU-Net-negative

LHU-Net-cancery-- -

UCTransNet-negative
UCTransNet-cancer-

SwinUNETR-negative{: - -
SwinUNETR-cancery-- -

UNEST-negative

UNEST-Cancer -+« womoeee o e
UNETR-negative |-
UNETR-cancerj---

SAM-Adapter-negative |

SAM-Adapter-cancer{-

L oy J

0.0

0.2
DsC

Figure 40: Boxplot showing right kidney DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 41: Boxplot showing left kidney DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 42: Boxplot showing gallbladder DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
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Figure 43: Boxplot showing liver DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not

liver DSC by diagnosis in JHH

MedNeXt-cancer

MedNeXt-negative | -

STU-Net B-cancer
STU-Net B-negative
STU-Net L-cancer
STU-Net L-negative
STU-Net H-cancer

STU-Net H-negative -

nnU-Net ResEncL-cancer

nnU-Net ResEncL-negative{ -

MedFormer-cancer

MedFormer-negative{ -

nnU-Net U-Net-cancer

nnU-Net U-Net-negative -

UniSeg-cancer

UniSeg-negative{ -

Diff-UNet-cancer
Diff-UNet-negative
NexToU-cancer
NexToU-negative
SegVol-cancer
SegVol-negative

U-Net & CLIP-cancery -

U-Net & CLIP-negative

SWInUNETR & CLIP-cancery -

SwinUNETR & CLIP-negative
LHU-Net-cancer

LHU-Net-negative | -

UCTransNet-cancer
UCTransNet-negative
SwinUNETR-cancer
SwinUNETR-negative
UNEST-cancer
UNEST-negative
UNETR-cancer
UNETR-negative
SAM-Adapter-cancer

SAM-Adapter-negative
0.0

f

H

Ml

——h
—HH

0.2

0.4

0.6
DsC

perform statistical comparisons between diverse Al algorithms.
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Figure 44: Boxplot showing stomach DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 45: Boxplot showing aorta DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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postcava DSC by di is in JHH
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Figure 46: Boxplot showing postcava DSC score by diagnesis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 47: Boxplot showing pancreas DSC score by diagnosis in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.

76



D.5.9 Sex: per-class analysis
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Figure 48: Boxplot showing spleen DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 49: Boxplot showing right kidney DSC score by sex in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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kidney left DSC by sex in JHH
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Figure 50: Boxplot showing left kidney DSC score by sex in JHH. Statistical significance is
indicated by stars: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 51: Boxplot showing gallbladder DSC score by sex in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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Figure 52: Boxplot showing liver DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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stomach DSC by sex in JHH
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Figure 53: Boxplot showing stomach DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 54: Boxplot showing aorta DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 55: Boxplot showing postcava DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 56: Boxplot showing pancreas DSC score by sex in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p < 0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.

81



D.5.10 Race: per-class analysis
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spleen DSC by race in JHH
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Figure 57: Boxplot showing spleen DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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Figure 58: Boxplot showing right kidney DSC score by race in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
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kidney left DSC by race in JHH
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Figure 59: Boxplot showing left kidney DSC score by race in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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gall bladder DSC by race in JHH
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Figure 60: Boxplot showing gallbladder DSC score by race in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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liver DSC by race in JHH
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Figure 61: Boxplot showing liver DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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stomach DSC by race in JHH
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Figure 62: Boxplot showing stomach DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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aorta DSC by race in JHH
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Figure 63: Boxplot showing aorta DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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postcava DSC by race in JHH
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Figure 64: Boxplot showing postcava DSC score by race in JHH. Statistical significance is indicated
by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. We perform Kruskal-Wallis tests
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not perform
statistical comparisons between diverse Al algorithms.
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pancreas DSC by race in JHH
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Figure 65: Boxplot showing pancreas DSC score by race in JHH. Statistical significance is
indicated by stars: * p < 0.05, ** p <0.01, *** p <0.001, **** p <0.0001. We perform Kruskal-Wallis
tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. Here, we did not
perform statistical comparisons between diverse Al algorithms.
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E On Label Noise

AbdomenAtlas 1.0 is an amalgamation of 16 public datasets (Appendix A.1), which, when combined
together, resulted in a partially labeled dataset. Radiologists, assisted by Al, provided all the
missing labels for 9 anatomical structures, making the dataset fully-labeled [60]. When creating
AbdomenAtlas 1.0 we did not revise the labels that were already provided in the public datasets.
However, upon future visual inspection, we found that these public datasets may share inconsistent
annotation standards, also reported in Liu et al. [47]. For example, the aorta annotation standard is
inconsistent in AbdomenCT-12organ and other datasets: part of the upper aorta region is missing in
AbdomenCT-12organ, while the aorta annotation is complete in BTCV and AMOS. Moreover, since
the public datasets that constitute AbdomenAtlas 1.0 contained both automatic and manual labels,
they can also portray human and Al errors.

To address this, we developed an automatic label quality checking tool, based on anatomical priors
(e.g., expected shape of organs), to detect and correct noisy labels. This tool indicated that aorta
concentrated most of the label noise in AbdomenAtlas 1.0. It has 32.4% of noisy labels, which are
mostly the aforementioned incomplete annotations. The second structure with the highest amount of
detected errors was the kidneys, but its percentage of noisy labels was much lower: 2.6%. Our tool
detected less than 1% of error in other classes. Therefore, the detected errors are mostly concentrated
on one of the 9 annotated structures. Moreover, since AbdomenAtlas 1.0 carried the errors and
annotation standard inconsistencies found in public datasets, the noise in AbdomenAtlas 1.0 labels
represents common annotation errors and inconsistencies. Conversely, studies on Al robustness
to label noise commonly rely on artificially generated noise [76]. Thus, we viewed the realistic
and quantifiable noise in AbdomenAtlas 1.0 as an opportunity to perform a realistic study on Al
robustness to label noise. To further increase the study’s realism, we simulate the standard scenario
where researchers are unaware of the noise: we did not inform the Al creators about the annotation
errors in AbdomenAtlas 1.0 prior to model training. This approach avoided uneven label corrections
by only some teams and ensured that the Al algorithms in this benchmark accurately represent the
realistic scenario of Al trained on public data with common label noise, without creators actively
trying to counteract the noise.

To assess Al robustness to label noise, the algorithms must be tested on datasets whose labels are
less noisy than those in the training data. The JHH test set (/N=5,160) was entirely annotated by
radiologists, manually and following a well-defined annotation standard, over 5 years [59]. Thus, it
serves as a gold standard for low label noise. Touchstone leverages this large-scale, high-quality test
dataset to verify whether Al trained noisy labels, representative of current public datasets, performs
well when evaluated with high-quality manual labels. Since TotalSegmentator is not composed of
multiple datasets, their annotation standards are consistent, and we detected low levels (<1%) of label
noise on them. Thus, they are also adequate for evaluating AI’s robustness. Additionally, to better
quantify the impact of label noise on Al accuracy, we re-trained ResEncL. on AbdomenAtlas 1.0C.
This dataset, which we publicly released, is a revised version of AbdomenAtlas 1.0, where labels
were improved by radiologists assisted by Al and by our error detection tool. The aorta was the
only class where the nnU-Net had large and significant performance increments (e.g., 10.35% DSC
improvement in TotalSegmentator). For other structures, improvements are mostly not significant
and low, demonstrating that the Al algorithm is robust to moderate levels of label noise (e.g., less
than 3% of noisy labels according to our detection tool), but not to excessive noise. The continuous
improvement of label noise detection and annotation quality, unifying annotation standards and
correcting public datasets’ flawed labels, is a continuous commitment of Touchstone.
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G Potential Negative Societal Impacts

Potential negative societal impacts of benchmarking Al algorithms for medical image segmentation
include reinforcing biases, compromising data privacy, and leading to misuse of Al systems. Standard
benchmarks may suffer from in-distribution biases, small test sets, oversimplified metrics, and short-
term outcome pressures, which can result in AI models that perform well on benchmarks but fail in
real-world applications. These issues can undermine the reliability, fairness, and generalizability of
Al systems in medical contexts, potentially causing harm and reducing trust in Al-driven healthcare
solutions.
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