

From Pixel to Cancer: Cellular Automata in Computed Tomography

Author: Yuxiang Lai, Xiaoxi Chen, Angtian Wang, Alan Yuille, Zongwei Zhou*

Background: Tumor Synthesis

• Limitations of previous synthetic tumors [Hu et al., CVPR 2023]

- Hand-craft shapes
- Blurry boundary
- Unrealistic big tumors
- Lack of the interaction between organs and tumors

Cellular Automata

Solution

Rules

Interaction

Organ Boundary

Vessel

Reader Study

	metric	liver	pancreas	kidneys
R1	sensitivity (%) specificity (%) accuracy (%)	100	95.0	95.5
3-year		27.3	22.7	26.7
experience		60.9	57.1	67.6
R2	sensitivity (%) specificity (%) accuracy (%)	94.7	87.5	90.0
7-year		47.8	47.4	56.3
experience		69.1	65.7	75.0
R3 10-year experience	sensitivity (%) specificity (%) accuracy (%)	100 45.4 68.4	100 55.6 72.4	100 57.9 75.8

positives: real tumors (N=25); negatives: synthetic tumors (N=25).

Examples

Results

