Stat 161/261

Introduction to Machine Learning:
 
Tues/Thurs: 11:00-12:15 am Spring 2014, Fowler A139.
 
www.stat.ucla.edu/~yuille/Courses/
 

Course Description

This course gives an accessible introduction to pattern analysis and machine intelligence aimed at advanced undergraduates and graduate students.

Reading Material


Grading Plan: 4 homework assignments (60% ) 1 final exam (40%)
Homework 1: homework1 Due Thursday 24/April
Homework 2: homework 2 Due Tuesday 13/May
P1_train.txt P1_test.txt P3.text P3_outlier.txt P4_train.txt P4_test.txt
Homework 3: homework 3 Due Tuesday 27/May
P3_A.txt P3_B.txt

Homework 4: homework 4 Due Thursday 6/June
Please email  wjyouch@gmail.com for questions on the homework

Tentative Schedule.

Lecture

Date

Topics

Reading Materials

Handouts

1

April-1

Introduction to the Machine Learning:
 

Alpaydin: Chp 1.

    HandNotes1 BigDataHype?

2

April-3

Bayes Decision Theory
Generalization and VC dimension
 

Alpaydin: Chp 2.

2.1, 2.2,2.3, Chp 3.

  HandNotes2 RRLatexLecture2

3

April-8

ROC and Precision/Recall Curves
Curse of Dimensionality
Bias and Variance
 
             Same Chps.
          Also Chp 4.3,4.4,            4.7,4.8
   HandNotes3 RRLatexLecture3

4

April-10

            
  Learning Parametric Distributions
Exponential Models
Sufficeint Statistics
  

Chp 4.1,4.2

  HandNotes4Revised RRLatexLecture4

5

April-15

Continuation of Previous Lecture

Previous lecture

  
       6
            April-17
   
Non-Parametric Methods

               Chp 8

 HandNotes5  LatexLecture5

     7

April-22

                   
Regression
 

Chp 4.6, 5.8

 HandNotes6 LatexLecture6

8

April-24

                    
                   AdaBoost
 

                Chp 6.4,6.5

HandNotes7  LatexLecture7
       9
            April-29
Perceptron and Support Vector Machines 
         PrimalDual    Chp 10.9 
   HandNotes8 LatexLecture8

    10

May-1

           The Kernel Trick
             
  HandNotes9 LatexLecture9 DecisionTree

11

           May-6


            PCA and Fisher's LDA

 HandNotes10 LatexNotes10
      12
              May-8
          KernelPCA MDS
                
 KernelPCA MultiDimScale LatexNotes11

13

May-13

                
Nonlinear Dimension Reduction
           
Saul1 Saul2 Saul3 Saul4 LatexNotes12
    14

May-15

 
       Independent Component Anslysis 


ICAreview
      15
              May-20

K-Means and EM Algorithm
               
 LatexNotes13

16

May-22

 
 Prob Models on Graphs (1)


 LatexNotes14

17

May-27

         
Probability Models on Graphs (2)
              
Same as previous lecture
      18
            May-29
Latent SVM, PAC Theory
              
LatexNotes15

19

June-3

Course Review



    20

           June-5

Homework Problem Review