AS.050.375, AS.050.675, EN.600.485

Probabilistic Models of the Visual Cortex:
 
Tues/Thurs: 9:00-10:15am Fall 2016, Ames 234.
 
 

Course Description

The course gives an introduction to computational models of the mammalian visual cortex. It covers topics in low-, mid-, and high-level vision. It briefly discusses the relevant evidence from anatomy, electrophysiology, imaging (e.g., fMRI), and psychophysics. It concentrates on mathematical modelling of these phenomena taking into account recent progress in probabilistic models of computer vision and developments in machine learning.

Reading and Background Material

Grading Plan: 5 homework assignments, 1 final project.
Homework 1   Due 29/Sept/2016
Homework 2   Due 25/Oct/2016
Homework 3   Due 9/Dec/2016
Homework 4   Due 22/Dec/2016
Homework 5                                                                                                                                                                                                                                                                                                                       

Schedule.

Lecture Date Topics

Handouts

Suggested Reading
1

Sept-1

Introduction to Vision
IntroLecture
YuilleKersten (Section 1.1, 1.2)
2
Sept-6
The Retina.  Simple Linear Models
RetinaIntro RetinaSmarter
YuilleKersten (Sections 1.3, 2.1)
3

Sept-8

Brief Introduction to V1. Models of Simple and Complex Cells.
V1 SimpleRetina SimpleCortex
YuilleKersten (Sections 1.3,  2.1)
4
 Sept-13   
Sparsity  and Natural Images
Lincoln Basis Sparsity Handnotes
YuilleKersten (Section 2.2)
5

Sept-15

Hebbian Learning and Regression
HebbsRegression RealNeurons  PCAhandout YuilleKersten (Section 2.3)
6
Sept-20 Filters for Binocular Stereo and Motion
StereoMotion
YuilleKersten (Section 2.4)
7

Sept-22

Making Decisions I: Statistical Edge Detection and Segmentation 
ProbabilityDecisionEdges DecisionTheory
YuilleKersten (Section 3.1, 3.2)
8

Sept-27

Making Decisions II: Bayes Decision Theory
DecisionTheory1 DecisionTheory2
YuilleKersten (Section 3.1, 3.2)
9
Sept-29  Probability Models of Neurons and Spatial Interactions  (MFT)
ProbModelsSpatial BackgroundMRFMFTGibbs
YuilleKersten (Section 4)
10
Oct-4
Boltzmann Machines BoltzmannMachines
YuilleKersten (Section 3.3)
11
Oct-6
Context Examples: Weak Membrane, Associative Field, Stereo
ContextExamples
YuilleKersten (Section 4)
12
Oct-11
Bottom-Up Attention BoyanSlides
YuilleKersten (Section 4)
13
Oct-13
Cue Coupling
WeakCueCoupling  CausalCueCoupling
YuilleKersten (Section 4)
14
Oct-18
   Cue Coupling Example & Probability on Graphs
ProbabilityOnGraphs

16
Oct-25
Motion Estimation
HandNotesMotion
LuYuille
17
Oct-27
Motion and Prediction
HandNotesFallOff HandNotesPredict
BurgiEtAl
18
Nov-1
Perceptrons
Perceptrons DecisionsLearning

19
Nov-3
MultiLayer Perceptrons
Regression MultilayerPerceptron

20
Nov-8
Deep Networks (I)
AlexNet    LowLevelExamples
DeepNets
     21
   Nov-10
                                                            Deep Networks (II)
  DeepNetInternal  DeepNetUnderstand
 SemanticSegmentation
     22
   Nov-15
                                                 Compositional Models (I)            
 CompositionalModels1

    23
   Nov-17
                                                 Compositional Models (II)
 CompositionalModels2


   Nov-22
                                                                   Thanksgiving



   Nov-24
                                                                   Thanksgiving


     24
   Nov-29
                                                   High Level Vision
LewisPoggio

     25
   Dec-1
                                                 Vision and Language                                 
TextCaptioning

    26
   Dec-6
                           Recurrent Neural Networks and LSTMs:Models of Attention
 RCNN_LSTM Attention Word2Vec

    27
   Dec-8
                                                                 Review of Course