Probabilistic Models of the Visual Cortex:
Tues/Thurs: 9:00-10:15am Fall 2020.
The course gives an introduction to computational models of the mammalian visual cortex. It covers topics in low-, mid-, and high-level vision. It briefly discusses the relevant evidence from anatomy, electrophysiology, imaging (e.g., fMRI), and psychophysics. It concentrates on mathematical modelling of these phenomena taking into account recent progress in probabilistic models of computer vision and developments in machine learning.
Lecture | Date | Topics |
Handouts |
Required Reading | Optional Reading |
1 |
Sept-1 |
Introduction | Slides | YuilleKersten (Section 1.1, 1.2) | An extended version of the lecture:Slides |
2 |
Sept-3 |
Introduction to Retina and Primary Visual Cortex (V1) | Retina V1 | YuilleKersten (Section 1.3) | ReadMe Lecture by Clay Reid V1_Mike_May BialekPhotoReceptors GollischRetina VisualCrowding |
3 | Sept-8 | Linear Filtering | Slides | YuilleKersten (Section 2.1) | KokkinosLinearFiltering CarandiniEarlyVisualSystem |
4 |
Sept-10 |
Sparsity | Sparsity | YuilleKersten (Section 2.2) | SparsityPowerpoints SparsityYuilleKersten Mini-Epitomes Background redeading:BarlowSparsity1972 |
5 | Sept-15 | Filters for Binocular Stereo and Motion | Stereo Motion Figures | YuilleKersten (Section 2.4) | |
6 |
Sept-17 |
Hebbian Learning and Regression | Hebbian Regression | YuilleKersten (Section 2.3) | TalebiV1RF GallantNaturalStimulus ZhangCNN ZhangCNNV1Patterns |
7 |
Sept-22 |
Vision as Bayesian Inference: Edges | VisionAsBayesianInference VisionAsProbabilisticInference | YuilleKersten (Section 3.1, 3.2) | chater2006probabilistic yuille2006vision |
8 | Sept-24 | Bayes Decision Theory | BayesDecisionTheoryYuilleKersten | YuilleKersten (Section 3.1, 3.2) | YuilleLecture2UCLA |
9 | Sept-29 | Cue Coupling Weak | Slides | Yuille&Buelthoff(1993) | |
10 | Oct-1 | Cue Coupling II | CueCouplingStrong DivisiveNormalization | ProbModelsOnGraphs | |
11 | Oct-6 | Context and Markov Random Fields | Slides | YuilleKersten (Section 4) | BeliefPropagationMFT |
12 | Oct-8 | Context Examples | Slides | YuilleKersten (Section 4) | Same as Lecture 11 |
13 | Oct-13 | Boltzmann Machines & More Context Examples | Slides | TS Lee (2014) | |
14 | Oct-15 | Motion and Kalman Filter | Slides BarlowTripathy Burgi et al. | A198 | |
15 | Oct-20 | Intro to Deep Nets | Slides FerusVittal MathDetails HintonAlexNet | YaminsNature2016 Yuille2020 | |
Oct-22 | Fall Break | ||||
16 | Oct-27 | Adversarial Machine Learning | Slides PatchAttack | Jason_Yosinski ZhouFirestone | |
17 | Oct-29 | Interpretable Deep Networks | Jason_Yosinski Bolei Zhou UnsupervisedDeepNets | SmirnakisYuille1994 QiaoFewshot UnsupervisedFlow UnsupervisedNAS | |
18 | Nov-3 | The 3D world and unsupervised learning | GeometryAndMotion Motion_Geometry2020 LambertianLighting BootstrappingDeepNetCueCoupling | EveryPixelCountsChenxuLuo2018 | |
19 | Nov-5 | Human/Animal Parsing | HumanAnimalParsing ParsingHumansCourse | ||
20 | Nov-10 | Learning by Immagination | YouOnlyAnnotateOnce PhysicalSceneUnderstanding SimulationEngine | ||
21 | Nov-12 | Compositional Models | CompositionalTheory ComplexityFundamentalProblem CompositionalModelsLearning | Generative Vision Model | |
22 | Nov-17 | Compositional Networks | AdversarialPatches CompositionalModelsOcclusion CompNetsAdamK | GeorgeCAPCHAS Detection_with_CompositionalNets Occluder_Localization_with_CompNets HongruZhuCogSci2019 | |
23 | Nov-19 | Analysis by Synthesis |
AnalysisBySynthesisIntro AnalysisBySynthesisDDMCMC | Image Parsing | |
Nov-24 | Thanksgiving | ||||
Nov-26 | Thanksgiving | ||||
24 | Dec-1 | Vision, Language, and Turing Tests | JunhuaMaoTextCaptioning CLEVR-Ref+ | ||
25 | Dec-3 | Model Robustness and Generalizability | AdversarialExaminerIntro CompositionalOpenSetActivity | ||
26 | Dec-8 | Human Parsing from Static Images and Sequences | Key-Pose-Motifs |