Lecture |
Date |
Topics |
Handouts
|
Required Reading |
Optional Reading |
1 |
Aug-31
|
Introduction |
Slides |
YuilleKersten (Section 1.1, 1.2) |
An extended version of the lecture:Slides |
2 |
Sept-2
|
Introduction to Retina and Primary Visual Cortex (V1) |
Retina V1 |
YuilleKersten (Section 1.3) |
ReadMe Lecture by Clay Reid V1_Mike_May BialekPhotoReceptors GollischRetina VisualCrowding |
3 |
Sept-7 |
Linear Filtering |
Slides |
YuilleKersten (Section 2.1) |
KokkinosLinearFiltering
CarandiniEarlyVisualSystem
|
4 |
Sept-9
|
Sparsity |
Sparsity |
YuilleKersten (Section 2.2) |
SparsityPowerpoints
SparsityYuilleKersten
Mini-Epitomes
Background redeading:BarlowSparsity1972
|
5 |
Sept-14 |
Filters for Binocular Stereo and Motion |
Stereo
Motion
Figures
|
YuilleKersten (Section 2.4) |
|
6 |
Sept-16
|
Hebbian Learning and Regression |
Hebbian
Regression
|
YuilleKersten (Section 2.3) |
TalebiV1RF
GallantNaturalStimulus
ZhangCNN
ZhangCNNV1Patterns
|
7 |
Sept-21
|
Vision as Bayesian Inference: Edges |
VisionAsBayesianInference
VisionAsProbabilisticInference
|
YuilleKersten (Section 3.1, 3.2) |
chater2006probabilistic
yuille2006vision
|
8 |
Sept-23 |
Bayes Decision Theory |
BayesDecisionTheoryYuilleKersten
|
YuilleKersten (Section 3.1, 3.2) |
YuilleLecture2UCLA
|
9 |
Sept-28 |
Cue Coupling Weak |
Slides |
|
Yuille&Buelthoff(1993) |
10 |
Sept-30 |
Cue Coupling II |
CueCouplingStrong
DivisiveNormalization
|
|
ProbModelsOnGraphs |
11 |
Oct-5 |
Context and Markov Random Fields |
Slides |
YuilleKersten (Section 4) |
BeliefPropagationMFT
|
12 |
Oct-7 |
Context Examples |
Slides |
YuilleKersten (Section 4) |
Same as Lecture 11 |
13 |
Oct-12 |
Motion and Kalman Filter |
Slides
BarlowTripathy
Burgi et al.
|
|
A198 |
14 |
Oct-14 |
Boltzmann Machines & More Context Examples |
Slides |
|
TS Lee (2014) |
15 |
Oct-19 |
Intro to Deep Nets |
Slides
FerusVittal
MathDetails
HintonAlexNet
|
|
YaminsNature2016
Yuille2020
|
16 |
Oct-21 |
Adversarial Machine Learning |
Jason_Yosinski
Slides
PatchAttack
|
ZhouFirestone
|
|
17 |
Oct-26 |
Interpretable Deep Networks |
UnsupervisedNAS
QiaoFewShot
|
|
Bolei Zhou
UnsupervisedDeepNets
SmirnakisYuille1994
UnsupervisedFlow
|
18 |
Oct-28 |
The 3D world and unsupervised learning |
Lambertian model of reflectance1
Lambertian model of reflectance2
|
|
EveryPixelCountsChenxuLuo2018
LambertianLighting
|
19 |
Nov-2 |
The 3D world and unsupervised learning(continue) |
GeometryAndMotion
Motion_Geometry2020
|
|
|
20 |
Nov-4 |
Human/Animal Parsing |
BootstrappingDeepNetCueCoupling
HumanAnimalParsing
ParsingHumansCourse
|
|
|
21 |
Nov-9 |
Learning by Immagination |
YouOnlyAnnotateOnce
PhysicalSceneUnderstanding
SimulationEngine
|
|
22 |
Nov-11 |
Compositional Models |
CompositionalTheory
ComplexityFundamentalProblem
CompositionalModelsLearning
|
|
Generative Vision Model
|
23 |
Nov-16 |
Compositional Networks |
AdversarialPatches
CompositionalModelsOcclusion
CompNetsAdamK
|
|
GeorgeCAPCHAS
Detection_with_CompositionalNets
Occluder_Localization_with_CompNets
HongruZhuCogSci2019
|
24 |
Nov-18 |
Analysis by Synthesis
|
AnalysisBySynthesisIntro
AnalysisBySynthesisDDMCMC
| |
Image Parsing
|
|
Nov-23 |
Thanksgiving |
|
|
|
|
Nov-25 |
Thanksgiving |
|
|
|
25 |
Nov-30 |
Vision, Language, and Turing Tests |
JunhuaMaoTextCaptioning
CLEVR-Ref+
|
|
|
26 |
Dec-2 |
Model Robustness and Generalizability |
AdversarialExaminerIntro
CompositionalOpenSetActivity |
|
|