Probabilistic Models of the Visual Cortex:
Tues/Thurs: 9:00-10:15am Fall 2018, Krieger 111.
The course gives an introduction to computational models of the mammalian visual cortex. It covers topics in low-, mid-, and high-level vision. It briefly discusses the relevant evidence from anatomy, electrophysiology, imaging (e.g., fMRI), and psychophysics. It concentrates on mathematical modelling of these phenomena taking into account recent progress in probabilistic models of computer vision and developments in machine learning.
Grading Plan: 5 homework assignments.
Preliminary
Schedule (subject to revision)
Lecture | Date | Topics |
Handouts |
Suggested Reading |
1 | Sept-4 |
Introduction to Vision |
Slides | YuilleKersten (Section
1.1, 1.2) |
2 |
Sept-6 |
The Retina. Simple
Linear Models |
Slides |
YuilleKersten (Sections
1.3, 2.1) Bialek EyeSmarter Microprocessor VisualCrowding |
3 |
Sept-11 |
Brief Introduction to V1.
Models of Simple and Complex Cells. |
Maths Kokkinos |
YuilleKersten (Sections
1.3, 2.1) |
4 |
Sept-13 |
Sparsity and Natural
Images |
Maths Sparsity |
YuilleKersten (Section
2.2) Barlow |
5 |
Sept-18 |
Making Decisions I: Statistical Edge Detection and Segmentation |
Slides | YuilleKersten (Section 3.1, 3.2) |
6 |
Sept-20 | Making Decisions II: Bayes Decision Theory |
Slides | YuilleKersten (Section 3.1, 3.2) |
7 |
Sept-25 |
Hebbian Learning and Regression |
HebbRegression Sparsity |
YuilleKersten (Section 2.3) Curtis Early Gallant |
8 |
Sept-27 |
Filters for Binocular Stereo and Motion |
Figures Motion |
YuilleKersten (Section 2.4) |
9 |
Oct-2 |
Context and Spatial Interactions Between Neurons I |
ContextMarkov |
YuilleKersten (Section 4) |
10 |
Oct-4 |
Context and Spatial Interactions Between Neurons II | ContextMarkov |
YuilleKersten (Section
3.3) |
11 |
Oct-9 |
Context Examples: Weak
Membrane, Associative Field |
ContextExamples YuilleXuLei |
YuilleKersten (Section 4) |
12 |
Oct-11 |
Introduction to Deep Networks | Slides LowLevelExamples |
YuilleKersten (Section 4) |
13 |
Oct-16 |
Boltzmann Machines & More Context Examples |
Boltzmann ContextExamples |
YuilleKersten (Section 4) |
14 |
Oct-18 |
Cue Coupling |
BasicCueCoupling CausalCueCombination |
|
15 |
Oct-23 |
More Cue Coupling |
CausalCueCombination |
Primer |
16 |
Oct-25 |
Deep Networks for Cue Coupling |
Slides |
|
17 |
Oct-30 |
Perceptrons |
Slides |
Regression Perceptron |
18 |
Nov-1 |
What do Deep Networks do? |
Yosinski ICLR Stanford |
|
19 |
Nov-6 |
Unsupervised Learning |
Smirnakis Holistic |
PAMI |
20 |
Nov-8 |
Attention (Bottom-Up) |
Niebur Saliency |
vonderHeydt EtienneCummings |
21 |
Nov-13 |
Compositionality (I) |
Slides |
|
22 |
Nov-15 |
Compositionality (II) |
Slides |
|
Nov-20 |
Thanksgiving |
|||
Nov-22 |
Thanksgiving |
|||
23 |
Nov-27 |
Vision and Language |
Slides |
|
24 |
Nov-29 |
High Level Vision |
ABS Parsing |
|
25 |
Dec-4 |
Kalman Filtering |
Kalman1 Kalman2 |
Simulation |
26 |
Dec-6 |
Review of Course |
Slides |